PHYSICAL REVIEW E VOLUME 58, NUMBER 4 OCTOBER 1998
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A simplified model of particle transport at a quasiparallel one-dimensional collisionless shock is suggested.
In this model the magneto-hydrodynamics turbulence behind the shock is dominated by a circularly polarized,
large amplitude Alfva wave originated upstream from the turbulence excited by particles leaking from the
downstream medium. It is argued that such a wave, having significantly increased its magnetic field during the
transmission through the shock interface, can effectively trap thermal ions, regulating their leakage upstream.
Together with a background turbulence this wave also plays a fundamental role in thermalization of the
incoming ion flow. The spectrum of leaking particles and the amplitude of the wave excited by these particles
are self-consistently calculated. The injection rate into the first order Fermi acceleration based on this leakage
mechanism is obtained and compared with computer simulations. The related problem of shock energy distri-
bution between thermal and nonthermal components of the shocked plasma is discussed. The chemical com-
position of the leaking particles is studid1063-651X%98)01610-9

PACS numbd(ps): 52.35.Tc, 96.50.Fm

[. INTRODUCTION perficially referred to as quasiparallel, whereas the rest
T - < 0,5< .
The problem of energy dissipation in collisionless shocks(wm. Q”B ml2) are ref_erred toas qu_aSI_perpendlcular
: . ; . It is important to realize that the distribution function of
in plasmas is old and exceedingly difficpit—9]. Moreover, . . .
: . : the backstreaming particles cannot be inferred solely from
there exist persuasive theoretical arguméh€11 corrobo- .
: . ; the macroscopic parameters of the downstream plasma even
rated by numerous simulation®.g., Ref.[12]) that this . R L
S . if the thermalization mechanism is properly understood. One
problem cannot be solved by considering exclusively the

thermalization of the bulk plasma flow when the latter passegbvIous reason for this is the following. Among the back-

through the shock. A significant part, if not almost all, of the streaming particles one f:an.fmd not only those which simply
rose from the randomization of the upstream flow at the

energy of a strong large shock may be channeled into a smafllk .
minority of particles accelerated through multiple crossing o ock(as backscattered from the downstream medium or re-
{Iected from the shock interfagebut also the particles of

its front. This acceleration mechanism is known as the firs .

. Y. . ._these two types which crossed the shock more than once and
order Fermi or diffusive shock acceleration. However, this :

. - ._ “therefore have gained some enefdg].
does not circumvent the problem of collisionless thermaliza- L
. C : The above arguments suggest that the injection problem
tion. The reason for this is that a small fraction of thermal - : . N

can be divided into the following two task§;) Given the

ions that leak or reflect from the shock play a crucial role in o . T .
- shock conditions, one determines the distribution of particles
the collisionless energy exchange between the bulk upstream

) originating from the upstream flow after they crossed the
motion and thermal and/or nonthern{atceleratedcompo- . . - o
. shock for the first time. Subsequently, one identifies those

nents of the downstream plasma. These ions generate waves . : : .
: . ; articles which are also capable of crossing the shock in a
in the foreshock region whose growth rate and amplitude ar A . e : -
directly related to their density. Yet they provide a seed, or<'c o directiorifirst generation of injected particles(i)

y Y. yPp " ~One follows the(stochastit trajectories of these particles

injection, population for the further acceleration. These twoWhen they multiply recross the shock, until they are swept

aspects of the shock dissipation are clearly interrelated. B}ﬂownstream or have achieved energies acceptable for the

wave excitation these particles create a scattering envirorgtandard description of diffusive shock acceleratigee

ment, allowing them to cross the shock repeatedly, which '%.g., Ref[14] or [15] for a review.
necessary for the Fermi mechanism to work. o The first task belongs to collisionless shock phy$&3],

One of the most important parameters of collisionlessyng can at least formally be treated independently of the
shocks is the anglé,s between an ambient magnetic field gjffysive shock acceleration process. The second constitutes
and the shock normal. While so-called perpendicular ShOCkﬂ']e injection pr0b|em itself as a part of diffusive shock ac-
(6ng=m/2) should clearly have a distinct shock transition celeration theory, and can be formulated in more detail as
because the hot downstream plasma cannot penetrate Uilows. Suppose task) is solved. Then, given the distribu-
stream for more than one ion gyroradius, their parallel countion of thermal particles that are able to penetrate into the
terparts @,g<<1) are not so suitable for confinement of the upstream region, one calculates the high energy asymptotics
heated downstream plasma, since it may penetrate far upf their distribution. This provides the coefficient in the
stream moving along the field lines. We will confine our power-law solution of the standard acceleration theory and
consideration below to this latter category of collisionlessthus the injection rate. It cannot be obtained within the stan-
shocks. In general, shocks withz< /4 are somewhat su- dard theory, since the latter is unable to describe low energy
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particles with anisotropic pitch angle distribution.

The solution of injection problerii) as formulated above A,
was obtained analytically in Ref13]. The high energy 7 J‘/Beam 2
asymptotics of this solution indeed matches the power law of Jid =

Pitch angle scattering\
downstream

the standard theory. At the lower energy end it smoothly
joins the downstream thermal distribution. This thermal dis-
tribution that determines the flux of leaking particles has
been simply assumed to be created by a unspecified shoc
randomization process, in other words due to the action of ¢
“thermostat.” In this paper we suggest a simplified thermo-
stat model. In the next subsection we put it into the general N
context of collisionless shocks. 0 u-C. u.C y
2 A2 1 Al

Pitch angle scattering
upstream

i

Thermostat model FIG. 1. Velocity space of particles just in front of the shock in

S fthe th tat i dilv k f the shock frame of reference. The “beam” particles schematically
ome or the thermoslat properties are readily known rOI'T}epresent the leakage from the thermal distribution downstream.

Or'dlnary Rankme-Hugomo([RH) jump conditions that con- After being scattered in a pitch angle first upstream and then down-
stitute the conservation of mass, momentum, and €nerd¥ream, as shown by the arrows, these particles appear in front of

fluxes across the sho¢ké]. In the simplest case when both e shock again but at higher energies and overlapping with beam
the magnetic field and the flow velocity are perpendicular tQyarticles. They are shown as “beam 2.”

the shock front, the RH conditions are the same as in ordi-
nary gasdynamics: shocks withM,>1. For whatever reasons, the RH condi-
tions have been observationally proven to be quite reliable in

p1tia=paliz, @ ollisionless shockgl7,18.
2 b~ 24P 5 In the case of high Mach number shockis!3
pIUTT 1= p2llz ™ e, @ =u3p?/yP,>1, the RH conditions simply yiel@for y=3)
u;/u,=4, and the downstream temperatirg= 3mpu§. If
1 3 Y 1 5 Y one assumes that all downstream particles that have veloci-
5P1UT T ———PiUi=5pouz+ ——Pouy, (©)) :
2 y—1 2 y—1 ties v,<—u, (Wherev, denotes the normal to the shock

front velocity component, and the shock is moving in the
Here the index 1 refers to the upstream medium whereasegativez direction can cross the shock, this information
index 2 refers to the downstream medigim all three equa- about the thermostat suffices to obtain an injection solution.
tions), p=myn, u, andP are the mass density, velocity and On the other hand, such an assumption can only give an
the gas kinetic pressure, respectively, anglis the proton  upper bound on the injection efficiency, and it highly over-
mass. The adiabatic indexcan be set toy= 3. The pressure estimates the latter. In principle, many particles in such a
and energy of the magneto-hydrodynami{®4HD) waves high temperature downstream distribution have negative ve-
that are implied to participate in the shock thermalizationlocities in the shock frame of reference and, therefore, can
process as a substitute for the binary collisions are neglectgubtentially escape upstream. But this would be a purely ki-
here for the following reasons. First, if the initial stat® nematic picture. In reality, too intensive an escape would
refers to the far upstream region in which the backscatteringesult in a fast excitation of waves scattering the beam back
particles do not penetrate and the waves are thus not presatiwnstream over a short distance. This process can be un-
the left hand sides of the above equations are written corderstood within the framework of the quasilinear theory of
rectly. If the final state(2) is also taken far downstream, the cyclotron instability developed for homogeneous plasma
where the thermalization process is completed and the enn Ref.[19] (see also Ref.13] and Sec. VII below
ergy of the waves excited at the shock interface is damped, Consider the phase space of such a beam emanating from
the same is true for the right hand sides. Even if the final anthe shock upstream on the plang (v, ) in the shock frame
initial states are taken substantially closer to the shock interef referencgFig. 1), where ¢, ,v,) are parallel and perpen-
face, these equations correctly describe the jump relations idicular to the shock normaand to the unperturbed magnetic
the case of a very strong shock. Indeed, the waves that afield) components of the particle velocity. The arrangement
excited in a highly supersonic and superalfvenic upstrearnof the beam in the phase space corresponds qualitatively to
flow via cyclotron resonance with the beam of backstreamits parameters calculated later in this paper. As soon as the
ing particles, are the transverséBL B;) MHD waves, and beam appears on the upstream side of the shock, it starts to
their amplitudeéB cannot exceed the unperturbed fi@8¢ generate MHD waves that move to the left in the local
since otherwise the beam would be trapped in this wave anglasma frame at the Alfwvespeed— C, but are in fact con-
carried back downstream. Therefore, considering strongnuously convected back to the shock with the main flow
shocks withMa=u3/vi=4mp,u?/B3>1, we may neglect since u;>C,. Their resonance length is of the order of
the contribution of the wave energy upstream. Downstreamy; /i, wherew; is the ion cyclotron frequency. The beam
it is increased by a factor (u, /u,)? due to the shock com- itself is scattered in a pitch angle by these self-generated
pression of the perpendicular component of the wave magwaves around the centerat— C,, so that it gradually dif-
netic field, but the wave energy may still be neglected comfuses into thev,>0 region, which means that it returns
pared to the thermal and the bulk motion energy in stronglownstream. The relaxation length of the beam, i.e., the
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depth of its penetration upstream may be estimatedizras reason is that the level of turbulencg is very high, and a
~u, /v, wherey is the growth rate of the cyclotron instabil- weakly turbulent approach is probably impossitdee, how-
ity upstream. Estimating from quasilinear equation@.g.,  ever, Sec. lll. This part of the shock transition should rather

Ref.[19]) one may obtain, fotg, be regarded as a Bernstein, Green, and Krudg@K) type
of wave[25]. Such an attempt is made in a companion paper
c ng Av, [26], where we consider the slowing down and the heating of
lg~—— —, the upstream plasma caused by interaction with this wave
@pi M Uz downstream.

. . The present paper suggests a model of ion leakage allow-
where w; is the ion plasma frequencyy, andno are the g the determination of the thermostat production rate that
beam and the background densities, respectively,fands 55 only parametrized in the injection the¢a]. The start-
the beam width irv; . The last factor inlg is in fact only  jng point of the model is the particle dynamics in the Ative
slightly less than unity, so that the upstream part of the entirgyave behind the shodz7]. The particle phase space is di-
shock transition is roughlyg/n,>1 ion inertial lengths, vided into two parts. One part contains the “trapped” par-
¢/ wp;. ticles which are convected downstream with the wave. The
In principle, the turbulence generated by the beam andecond part contains “untrapped” particles, or particles in-
growing in the downstream direction could gradually satu-teracting adiabatically with the wave, and particles trapped in
rate at a distancezlr, and the plasma flow beyond this the nonlinear Doppler resonance. These particles can escape
distance could be declared as a downstream state. Howevejpstream when their averaged velocity with respect to the
this is not what actually happens as both the observationgave is high enough.
and numerical simulations of strong shocks revsak, e.g., It is not assumed, however, that particle motion in this
Refs.[7,9]). That is, there exists a relatively sharp shockmodel is purely regular. Instead, a downstream turbulence
transition inside of this structure where the amplitude ofthat should exist together with the monochromatic wave al-
magnetic pulsations increases over a distan@ wy;, the  lows particles to cross the boundary between trapped and
bulk flow slows down nearly to its downstream value, anduntrapped regions and also between the “lock” and ‘“es-
particle orbits spread in a velocity to an approximately thercape” states of particles in the phase space. Although this
mal width in a substantially increased magnetic field. motion across the invariant manifolds of the regular dynam-
Existing one-dimensiondlLD) and 2D hybrid simulations ics is assumed to be relatively slow, it should produce the
(ions treated as particles and electrons as a)flofdquasi- necessary entropy by virtue of the standard arguments
parallel shockg9,20—24 also provide some clue to how [28,29: even a very weak perturbation can quickly random-
particles are confined on the downstream side of the shockze the particle motion while imposed onto the regular mo-
That is, despite the fact that there are indeed many particleson in the large amplitude wave, since the main job is done
just downstream of the shock front that have velocitigs by this wave via fast phase mixing. From this reasoning we
<0, only a few of them recross the shock. This suggests thajbtain the fraction of the downstream particles that escape
the heated downstream plasma is directly locked by theipstream from such a trap as a function of their energy. This
waves which have been excited in the upstream region, angllows us to calculate the unknown “thermostat” distribu-
then transmitted across the shock. In part, they may be gemion function in terms of the wave amplitude.
erated at the shock interface. Because of a substantial down- The final step of this scheme is the determination of the
stream increase of the wave amplitude due to the shock conmvave amplitude from the beam density. This provides, in
pression, the perpendicular component of Bhdield may fact, an equation for the wave amplitude, since the beam
become large enough to trap the bulk of the particles and tdensity depends on this as well. Upon solution of this equa-
sweep them downstream. An additional factor that can als¢ion one obtains both the beam density and the wave ampli-
help to confine the shocked plasma is an electrostatic barrigude as functions of shock parameters.
that is also observed in simulations. The analysis of the back- In Sec. Il we briefly review the particle dynamics in a
scattered ions performed by Qud8i shows that the up- monochromatic circularly polarized wave, introduce suitable
stream flux of these particles is significantly smaller than itvariables, and consider the special case of a very strong wave
would be if all downstream particles with negative velocities(5B/By>1). In Sec. Il the role of the background turbu-
were to stream freely across the shock. lence is discussed and adiabatically leaking particles are
Another important conclusion that can be drawn from theidentified. In Sec. IV the probability of their escape is calcu-
1D hybrid simulationgsee e.g., Refl9]) is that the down- lated as a function of energy and wave amplitude. In Sec. V
stream wave turbulence is dominated by a mode excited bghe resonant escape is considered. Section VI deals with the
the backstreaming beam in the upstream region. One camependence of escape fluxes upon the mass to charge ratio.
think of a circularly polarized quasimonochromatic MHD In Sec. VIl we calculate the wave amplitude upstream. This
wave convected downstream with the bulk plasma and exenables us to obtain the particle flux without parametrization,
tended there over a distance of the order of 100 ion inertiagimply as a function of the Mach number. After a brief sum-
lengths. The amplitude of this wave is quite larg/B,  mary of the considered leakage mechanism in Sec. VIII, in
~(3-4) (see also Ref23)). Traces of the quasiregular par- Sec. IX we calculate the spectrum injected into the first order
ticle motion in the wave are also seen in the simulati®s  Fermi acceleration, and compare it with the hybrid simula-
Beyond this distance the wave is gradually damped, and thgons. We conclude with a discussion of alternative mecha-
particle distribution tends to a thermal one. However, unlikenisms and possible applications to the problem of energy
the upstream palt, of the total shock transition, the distance partition of collisionless shocks between thermal and non-
where it happens is very difficult to assess analytically. Thehermal particles.
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Il. PARTICLE DYNAMICS IN THE WAVE dv,

—J\?—2gv,sinq.

The equations of motion in the case considered here are dt
fully equivalent to the equations of particle motion in a whis- _ _ ) )
tler wave. These equations have been extensively studied jfhe integral\® can be written in the old variables as
the past. It is well known30] that they are completely inte-
grable. However, unlike the situation with the whistler wave

where one usually assuméB/B,<<1, we must concentrate . . . .
on the opposite case as it was described in Sec. I. Here \A%esz'desg" thzere IS anothezr _obwous integral, the en_euj;_/
=vy+vy+v;. Note thath“ in Eq. (12) can be negative in

therefore present a technically different description of the , : - 2
particle dynamics which is suitable to our purposes. certain parts of the phase space; positive definite is only the

Let us assume that the wave propagates irzttizection, quantity \*—2ev,. However, being interested in the case
i.e., normal to the shock anBl,=B,=const. We represent ©<1, We start our consideration of syste{fi2) from the

. - . 2 .
the total magnetic field in the reference frame moving withSIMPIest situation whera*>|ev,|. As we will see, the es-

N2=vi+v]—2v, COSZ+2vy Sin z+2zv,+ 1.

the wave in the form caping particles interact with the wave adiabaticaty>(1)
in this case. We shall return to the case of small and negative
B=B,e,+ B, (—ecoskyz+gsinkqz), (4)  N?<e (resonant escapén Sec. V.
where{e} denotes the standard basis in coordinate space, Adiabatic wave-particle interaction

andkg is the wave number. The electric field vanishes in the

wave frame of reference, and the equations of motion read Ntroducing the variable

dv e _ &
—_ yx n=v,+ —cosq—e, (13
dt mpcv B, ®) A
d and retaining only the terms of zeroth and first orderg,in
z ; )
gt Ve (6) system(12) describes a simple pendulum
. . dq dn .
where the particle velocity=v,e,+v,6,+v,€,. Interested a” at \ sing, (19
in the case
B with the Hamiltonian
e=——<1, 7
H=2\ sir? 5|+ 57" (19
we introduce the cyclotron frequency
eB, that is connected with the integralsand\ by means of the
0, =— (8)  relationv?=2H+ (A —1)2. It is convenient to introduce the

MpC standard action-angle variables in the system of equations

and rescale the variables in E¢S) and (6) as follows: (14) and(19), using the truncated action

koz—2z, w, t—t, kiv—w. (9 S:f 7 dq (16)
W
as a generating function. The functiéd=2\/H=4\/[v?
—(N—1)?] divides the particle phase space into two parts
dv that will be superficially referred to as the region of trapped
a=v><(—excosz+ gsinz+ee) (10 (k>1) and untrappedk< 1) particles. It should be pointed
out that the particles with>1 are not really trapped in the

and Eq.(6) remains unchanged. It is convenient to make a!Sual sense because they can become untraploed )

further transformation in these equations, (v,,v,.2) Wit.hout changing their energy?. We shall return to this
—(\,9,v,,2), in which y point below. Here we only note that the analogy to, e.g., the
il Wz i)

particle dynamics in a monochromatic Langmuir wagé]
vtivg=— IN2=2zv,exdi(q—2)]+exp —iz). is incomplete in this respect. In many other respects
(11) “trapped” part_|cles behave as such, in particular their aver-
aged velocityy is zero. According to Eq(13) this means

Using these new variables, E@) is rewritten as

It is easy to see that is conservedd\/dt=0, and we arrive

: . ; / . thatv,~e.
at the following one dimensiondi.e. integrable dynamical For the untrapped particles, using E¢s5) and (16), we
system in the variablegy(v ) obtain ’ '
dq £ COS(Q \/K
@t e o g 2hg[d
dt z )\2_281)2 S=4 K E(Z,k), (17

(12
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where E is the incomplete elliptic integral of the second
kind. It is convenient to define an actidnas

§hock <

1 27
1= surtn) [T dg (18

so that we finally obtain

4\

I=— - sgnn)E(k), (19

whereE denotes the complete elliptic integral of the second  FiG. 2. Phase space of particles moving in the wave behind a
kind. Thus, the untrapped particles occupy the regidfis shock. The shaded region corresponds to the adiabatically escaping
=8\ /w=Js, and far from the separatrixk& 1) wherek particles.

—0 one simply hag— 7. The angle variablg conjugate to

Jis noted here that the background turbulence can be very well
generated by particles themselves. One generation scenario
q (the so-called sideband instabilithas been studied for
JS F<§,k> Langmuir waves in Ref.32], and for whistler waves in Ref.
= 57 Ko (20) [33]. The results can be summarized briefly as follows. After

the wave is switched ofor, what is more appropriate for our

. .. case, the plasma has entered the region of wave localization
yvhere FandK are t.he incomplete and complete el!lpt|c and the particles have bounced a few times in the wave field,
integrals of the first kmql. Note that—q ask_—>0. We will yheir distribution becomes “ergodic” and depends only on
not use the corresponding action-angle variables for trappeﬁi]e action]. This happens due to the fast mixing in the phase

particles. variabley. This ergodic distribution is, however, usually un-
stable with respect to the excitation of satellites of the main
IIl. BACKGROUND TURBULENCE wave due to the resonances=n{(J). Here w, and k
AND ESCAPE UPSTREAM ~k, are the frequency and the wave number of a satellite in

The simple particle dynamics in a monochromatic waveth® main wave frame()(J) =dH/4J is the frequency of par-

considered in Sec. Il implies that the amplitude of this waveficlé oscillations in the wave, andis an integral number.

is constant in space and time. This is certainly not the case A duasilinear theory of the backreaction of excited satel-
for the wave associated with a shock. As we mentioned idit€ turbulence on the main wave and on the ergodic particle
Sec. | the wave is extended over a finite distance on thdistribution has been developed by this authd4]. This
downstream side of the shoéke assume betweer=0 and theory shows that the satellites change both significantly the
z=L, andk,L>1) and decays at largez. Thus particle particle distribution and the wave. However, they evolve

1 . - . - . l

interaction with this wave occurs in the following way. First, 'elatively slowly compared with the particle periét™". In
particles that cross the=0 plane fromz< 0 become trapped particular, the untrapped particles can dlffuseJnvarlablg

(at least an appreciable part of theand move downstream. &nd cross the separatrk=1 becoming trapped, and vice
Indeed, after crossing=0 they “feel” a strong quasiper- Versa. This diffusion may cover the phase space globally in

pendicular wave field. The wave number can be estimated Fontrast to stochastic layers around separatrices that usually
develop in the case of quasi-monochromatic perturbations

U [35]. Coming back to the subject of this paper, one can ex-
kO:u_kuv (21) pect a similar process that results in particle exchange be-
2 tween the trapped and untrapped regions, as shown schemati-

wherek, is the wave number of the most unstable and pre€ally in Fig. 2. .

sumably strongest mode in the upstream region excited by N @ general sense the origin of the background turbulence
the escaping beam due to the cyclotron resondmge wg 1S not important in our S|r_an|f|ed model. Itis quite clear that
=0 (we use here unnormalized variabless we shall see, there are many factors in the shock neighborhood that can
|vy| in this resonant condition may noticeably exceed drive su_ch a tur_bulence anql, hence, destroy the invariants of
Here, we estimaté, ask,<wy, /U;. Thus, the gyroradius the particle motion. Our critical assumption is, however, that

of particles crossing the shock downstream is smaller thaf'® Particle diffusion in the) variable associated with this

the wavelength, turbulence is2 slow compared with the regular motion:
D(J)/Q(J)<Js, whereD is the quasilinear diffusion coef-
U;—U, U;—U, ficient. On the other hand we also assume that the back-
Ko o S u, e<1, (22)  ground turbulence provides sufficient mixing of particles in

the region G6<z<L, i.e., DkoL/Q>J%, so that we finally
and these particles must be effectively deflected in the wavénpose the following constraint on the diffusion coefficient:
magnetic field. Since the wave is not really monochromatic D
and low amplitude turbulence is always present as well, the < —<1. (23
motion of particles is not fully deterministic. It should be koL~ QJg
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Under these circumstances the escape flux upstream beconteguations(24) and (25) define a criticak=k, (ug), so that
virtually independent oD, i.e., of the downstream back- particles withk<<k, (dotted area in Fig.)2escape upstream,
ground turbulence. To explain the point consider the phasehereas the rest are convected downstream.

space in Fig. 2 again. As seen in the wave frame the shock

front z=2z, is escaping to the left at the speag=u,—Cx IV. INVARIANT MEASURE OF ADIABATICALLY

~U,, whereC, is the phase velocity of the wave propagat- ESCAPING PARTICLES

ing backwards in the local fluid frame as one excited by the

backstreaming particles in the upstream region and transmit- In Sec. Il we defined a boundary in particle phase space
ted then downstrea86]. Therefore, the particles above the that divides the shocked downstream plasma into two parts,
upper branch of the separatr&” (k=1) cannot penetrate €scaping upstream and convecting downstream. In a four-
upstream. At least some particles bel&w can in principle ~ dimensional phase space,{) this boundary is a hypersur-
cross the plang=0. To identify them we first consider a face given by the equatioisee Eqs(24) and(25)]

particle havingk(J)<1 belowS™. Its velocityv, oscillates _

in time, and depending on the invariadtandv the absolute v4(J,N)=—Up. (26)
value of particle velocity can exceed at least instantaneousl¥ )

the valueu, and, therefore, such a particle can potentially The unperturbed motion takes place on a 2-torus labeled by
take over the shock front. For this to happen it must reactie two arbitrarily chosen independent integrals of motion,
z=0, and since the diffusion il is slow, it must come from Which are equivalent to two action variables. Reducing the

a far downstream region. Therefore, it should exceed th&tion to an effectively one-dimensional one, we have used
velocity u, not only instantaneously but also on averagethe actionJ as an action of the one-dimensional motion, and
(over Q1) to be able to reach the shock front and then tothe integralk accounted for the motion in cyclic variables.
cross it. These particles are shown as the dotted area in Fighese invariants were useful for the task of Secs. Il and II.
2. Therefore, the area between the separa®ixand the However, our final goal is to calculate the escaping flux start-
dotted areawhere,< —u,) should be virtually empty in ing from the Rankine-Hugoniot relat_lons, i.e. from the pa-
the vicinity of the shockz=0+, since the shock is effec- rameters qf the upstream flow, Wh.'Ch. un.fortl.mately. yield
tively escaping from these particles and refilling this area b pnly the width of the downstream distribution in not its

. C . form, whereas the pitch angle distribution is implied to be
the trapped partlcle&iboyes ) anq escapln@beIO\{vSe) dug isotropic. We thus need to transform the results of Sec. Il to
to the diffusion acros§&™ andS; is slow due to inequality

. the variables) and u, whereu is the cosine of a pitch angle
(_23)' The. same arguments can be applied to the trapped Py the wave frameIL.LA reasgnable starting assupmption g<;':1bout
ticles which havev,~&>—u and, therefore, cannot reach the particle distribution is that, far downstream, where the
the shock. An exception should probably be made for some,ermalization of the plasmilso due to the interaction with
particles in the leftmost trapped region. Their return up-the Alfven wave is completed, the distribution becomes iso-
stream may occur whe§™ crosses the line,=—Uo (N0t tropic in pitch angle and, for example, a Maxwellianin
shown in Fig. 2 provided that they have a proper phase in  ag argued in Sec. Ill, the background turbulence will gen-
the wave while crossing the shock. However, this would be @rally destroy the 2-tori and give rise to a relatively slow
reflection off the shock front rather than the leakage from theyifrusion in » and J. If we assume, in addition, that this

downstream region considered here. We shall not take thig,ipulence is mainly due to the weakly dispersive Aifve

poss_,ibility fu_rther ir_lt(_) account her(e_see Ref[37] for are- \yaves or magnetosonic waves propagating alrtenstipar-
flection dominated injection scenayid-or the above reasons gjie| to the unperturbed magnetic field and all in the same

we can identify the particles escaping upstream with thos@jrection, then this diffusion is essentially a diffusion in pitch
below S, in Fig. 2. If the amplitude of the background tur- 5ngle |n other words remains invariant, and the second
bulence satisfies conditici23), the flux of the escaping par- ,rqer Fermi acceleration is not important.

ticles can be obtained from the ergodic arguments regardless oy next assumption concerns mixing properties of the

of any details of their interaction with the background turbu'particle dynamics influenced by the background turbulence.
lence. One may think of a quasilinear plateau that also doeg, paricular, we assume that the relevant phase flux is er-
not depend on the form of the wave spectrum as of a simplgqic, and that the typical length scdlg of the pitch angle
analog to this situation. For the particles on the cu8yewe scattering satisfies the conditiorkg#<L <L [see Eq(23)].
have The ergodicity implies that when a particle wanders in the
regionze (0L), the time spent by it in the “escape” posi-
1 rom tion is proportional to the size of the “escape” region.
= v,di=—Uy. (24) Thus, to calculate the fraction of the backstreaming par-
22w o f ticles that can cross the shock as a functiom ofve need to
calculate the fraction of the hypersurface= const down-
stream from the shock occupied by the escaping particles.
Using Eqg.(13) and the action-angle formalism introduced in According to Sec. lll, this fraction can be represented as an
Sec. Il one easily finds invariant measure of these particles on the isoenergetic sur-
face in the phase space as follows:

_ — 1
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Here we have introduced the spherical coordinates in thé&n escape of these particles is possible onlyforl, and

velocity space: the escape probability behaves ag~kZ (v—1)%? for v
_ —1<1, wherek, is also rather small numerically far
UVz= UM, <vya, Wherevy,  may be characterized as a threshold ve-
locity of the adiabatic escape and can be estimated from Egs.
— _,2
vx=vVl—picos e, (28 (24) and(25) asvy, ,~1+¢. For largerv, k, rises sharply
B , to reachk, =1. Forv—=, vee~3(1—v ). The former
vy=vV1l=pTsin . formula for v reflects the shrinkage of the phase space of

adiabatically escaping particles as—»1+, and does not
mean that there are no other escaping particles withil
(see Sec. Y The interpretation of the last formula is
straightforward: these particles are not influenced by the
wave, and nearly half of them escape.

To obtain the distribution of escaping particles one has to
multiply ves: by the thermal downstream distribution. To be
specific we assume that the latter is a Maxwellian with the
rcilownstream thermal velocity,. Then, using our dimen-
sionless velocity in the wave framewhich is virtually the
downstream velocity@,<<u,) the pitch angle averaged dis-
tribution of escaping particles can be written as

The integration regioh’ contains one wave period iy i.e.,

2, and is confined in the other three variables by the hyper
surfacek=Kk, (\,ug) =const to be obtained from Eq&4)
and(25). According to the normalization used in EG7) the
full measurer(v) =1, and Eq(27) thus yields the fraction of
particles escaping from the surface= const. The boundary
k, of the regionl” is not a coordinate surface in the variables
used in Eq(27), over which the far downstream distribution
is assumed to be uniform as discussed earlier in this sectio
To evaluate the integr&R7), we therefore transform it to the
variables already introduced in Sec. Il as follows:

(Uwu’qsiz)_)()\quniz)v with

A= \/vz(l_/.Lz)—ZU \/1—,u,2COSa+ 1+2evu,

) vV1—u’sin a

=arcta ,

a vV1—plcosa—1
v(1—p?)—J1-p®cosa foy= N2 3exp(—v—22) (35)

=puU—EV , = 3 ,

T vP(1- u?)— 2/1- pPcosa (2m)%%3 203

and a=¢+z. The absolute value of the Jacobian of thisWith vo=ekoVr/we, and V= T,/M is the downstream
transformation can be conveniently expressed after some ahermal velocity. The factor (+uo/v)/2 accounts for the
gebra through the invariants of the unperturbed mati@amd  limited fraction of the phase space at giverin which par-

2
Fes&v):mVes&v)fM(U)- v>1, (34)

(29 whereas

N ticles escape into the upstream half-space. According to Egs.
(21) and(22), we can estimate, as
a(\,7,q) _02+O(82) 30
S A ) Vv
v, b)| X UZSgu—TM@g, (36)
2

Thus the invariant measuf@7) rewrites as
1 where the last value is valid for a strong shock with a com-
Ves= 72 f S[v'(N,7,q)—v]\ d\ dp dg, (3D pression r.atlo of 4. Smceescsfcartg to grow from zero _only at
vem Jr v>1, we infer that the contribution of the particles interact-

) ] ing with the wave adiabatically is exponentially small.
wherev’?(\,7,9)=2H+ (A —1)?, andH is defined by Eq.

(15). The next transformation which we perform is a canoni-

cal one, also introduced in Sec. Il, i.en,q)—(J,#). Then V. RESONANT ESCAPE

we obtain Let us turn now to the resonant particles, that cannot be
1 described by the simple formalism developed in Sec. I,
. 2 B . . -
_ S(v'—vIN dx dJ. 32 sinceA can be very smaI.I or even negatlye in this case. Itis
Vescm 2,2 fr (w'=v) 32 convenient to use the variables, f, «) again[see Eq(29)],

wherea= ¢+ 2z, and a Hamiltonian
Transforming this integral to th& variable introduced in
Sec. Il, after some simple algebra we finally obtain

H=1-p’cosa+ivu’—cpu, (37)
1 1 3/2 - - , , ,
—k2—1+ \/—k*?—Kk?>+1 which is related to\? throughH = (v2+1—\?)/2v. The ex-
V2 (ke 12 4 act equations then take the forms
Vesce ™ K(k)dk.
v Jo 1
k3\/Zk4vz—k2+1 du oy
(33 ap ~ Vimwsina=—oo
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da L COS OH of the elliptic point of the Hamiltoniai37) =0 (mod 2x),
— = tpu—e=—. (39 ML= pg. The equation fop, reads
dt 1—pu? op
— + =
- | - o T V=g, (39
The particle trajectories are shown in Fig. 3 as a contour plot

of the function\? with fixed v. Next we concentrate on the and in the case of smadl<1 and|u,|<1, the last equation
region of small and negative?. First, consider the vicinity reduces to a cubic one which yields, fap,

r—2|§|1’2sin}{zsinh‘1—8m} £<0
3 F3hal

1 €
o= —2§1’2cosr{§ coshlg—g,—}, 0<é<e?B (40)

11 e 27 y
\ 251/25”'{5 Sin 1?7—?} §>8231

where ¢=$(v—1). The bottom expression is strictly valid eraged velocity, that starts from the value,=v uq at the
when¢<1, otherwise a more accurate treatment of 8§)  pottom of potential well increases with the radius of the or-
is needed. At the same time, for largethe main contribu-  pit, finally reaching—ug. Near the threshold whene— v,

tion to the particle escape comes from the adiabatic region. 1 e condition,= —uj is fulfilled for an orbit which is
which was already considered in Sec. IV. Moreover, the i

q ¢ th | ticle distribution falls off close to the critical point of the Hamiltonian. It is therefore
downstream thermal particie distrioution talls oft VEry rap- ., enjent to introduce a variable= u— ug and expand the
idly in v, and the behavior of the escape probability at th

o . €Hamiltonian(37) at «= »=0, retaining only cubic anharmo-
lower energies is generally more important. Therefore,

W&icity i i 2

; . . icity in |v|<1, and neglectingp* and a“vu, compared
start our conS|dgr_at|0n ffom the casec1. A particle that with a?<1. Thus, the truncated Hamiltonian takes the form
moves at the critical pointbk=0, u=uy can escape only '

when 2 3

o Mo
Hy=— 5+ = (- py)v?i— =~ (44)
P, (41) 1 2 4(§ Mo 2

[see Eq.(26)]. Since|uo| is always small foré<0 [u, We again introduce the action-angle variables
=—(2e)3 for | £ <e?3 anduo=2e/3¢ for |£|>&%7], the  (v,a)—>(,J), consideringx as @ momentum. The transfor-
last inequality cannot be fulfilled for all resonant particlesmation is generated b$= [« dv. Thus, fory,J, we obtain
with v<<1, and therefore a threshold velocity, occurs. As

it was argued in Sec. lll, the dimensionless velogigycan _ q _dS
be estimated as = Qady, Y=, (45)
Kou
Up= =g, (42 Where
w,

. . . a=\—po(v’—ap*+ay),
whereu, is the bulk velocity in the downstream regipsee

also Eq.(21)]. In practiceug can deviate from valuet2) due

to a number of reasons, e.g., due to a finite propagation speed
of the wave and/or due to the fact thaf depends oy, .
Therefore, we represent, as us=«¢{, where/=1. Then,
using Eq.(39), inequality (41) rewrites as

3 2
v>u=LV({+ 1)_2+822%+82. (43
To obtain the number of particles that are trapped into non-
linear resonance around the pomwt0, w=uy and escape

\
|

\ o

i U

-

upstream, we can use the same arguments as in Sec. IV in
our calculation of the escape flux of the untrapped particles.
Thus, givenv >vy, we calculate the critical orbit around

=0, u=pupo for which the averaged velocity,=vu

= —Ug. Due to the anharmonicity of the oscillations the av- FIG. 3. Contour plot oi\? for v=0.9 ands=0.2.

- @ X
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ao (46)

3
T2
anda, plays the role of the “energy” constant of the anhar-

monic oscillator(44). It is worthwhile to perform the trans-
formation

=
Mo Ho:

=3a,(2z+1), (47)
and to rewritea in Eq. (45) as follows:
32
a=|3a V=mo(z=2-1)(29—2)(z,—-2), (48)
where
(1 2mn
z,=sin §S|n La+ -/ (49

Herea again denotes the “energy” of the oscillat@¥4) and
varies between-1 and 1 in the potential well. Substituting
Egs. (47) and (48) into Eq. (45), after some simple algebra
we obtain

(ug— %2 2(k" 2+ kHE(k)—k'2(1+ k2K (k)

5‘[277#% (kr2+k4)5/4 '
(50)

wherek?=(zy—z_,)/(zy—2z_,) andk’?2=1—-k2. As men-
tioned, there exists a critical=J,, such that the particles
with J<J. escape, whereas the particles witk J. do not.

To calculateJ, we introduce the averagq_d as

J= 33/2

=5 [T wm. G
ThenJ, will be defined by
#(JeJo=—Uo="—Le. (52
The last equation can be rewritten as
v(v+po)= e, (53

wherev=(1T)$v dv/a(v), a(v) is given by Eq.(46), and
T=¢dv/a. After a short calculation we obtain

(2 K2+ k'2+ k%) — (54)

a,
BNEETAE K(k)
Inserting the last expression into E§3), we first obtaink,
as a root of the equation
vlw(k,)+pol=—8¢ (55

and, then using Eq50), we finally obtaind.=J(k, ).

Normalizing the full measure of the particles at
=const to unity,

1 1 T
Qo—ﬂ f,ld’uj,wda_l'

(56)
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and adopting arguments similar to those already used in Sec.
IV, we find, for the invariant measure of the resonantly es-
caping particles,

1
Qesc 4 fJ<Jeda du (57)
Transformingda du—dy dJ we thus find
Qes= 2‘:I _1J(k ). (58)

Not far from the threshold velocityv=vy,), wherek, is
small, from Eq.(55) we obtain

KA i 59
1632 * T HoT T (59
Since
35/2( 6)5/2
J(k)~ — k",
2% Mo
for QescWe have
V2 el
Qesc~€[3//*(2)_2(v_1)]3/2 1+ U_/LO)’ (60)
which in the case, +v>¢%3, simplifies to
2 312
Qescwg(l'ipg)(l_v) (v—v). (61)

As v grows approaching unity, Eq59) becomes invalid,
and in the case opposite to E®9), i.e., whenk’ <1 from
Eq. (55), we find

2(v—1)—3ul

2 _q_ _

ki~1-16 ex4 3v 30— 1o+ 3omgl (62
~1-16 exd —3x2Y3: 21 (63)

Note, that the last expression is valid only far—uv|<e*?3

The escape probability then takes the fofgs. (50) and
(58)]

33/2 (MS _
5V2m

§2)5l2

Q — 2
esc MO

(64)

The dependencé€{v) as calculated for smak and for
k=1 is shown in Fig. 4. Since the downstream thermal dis-
tribution falls off very rapidly, the resulting escape spectrum
will have a maximum irv close to the poinb =vy~3. The
distribution of the escaping particles can again be written as

Fesczmﬂesch(U) . (65)

For largerv=1, when the approximatiohuy|<1 breaks
down, formula(64) becomes invalid as well, and a more
accurate consideration of Eq88) is needed in this case. At
the same time)s~¢ for v=1, as may be seen from Eq.
(64), and the escape in the regior- 1=1 is dominated by
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(kov/w,)(A/Z)>3 for unnormalizedv. The escape prob-

Qeoe[ ' ' ' abilities ves{v) andQ.s{v) (Secs. IV and VY as functions of
P T T RUR USRS PR L dimensionless velocity are also the same for all sorts of par-
ticles. The quantity that discriminates particles agaiv&t
0.1 ratio in dimensionless variables is obviously the downstream
005 v thermal velocityv, [Eqg. (36)]. For a specieg, we thus have
Vig A
Uza—l)zv__rz. (66)
QCSC
We may now use Eq$34) and(65) for calculating the dis-
0.15F tribution of escaping particles of a sa#tupon substituting
01t R A v,, instead ofv,. It is of course assumed that all the argu-
ments of Sec. Il are valid for these particles as well. There
0.05+ exists, however, the problem of the thermal velociNgs, .
It is indeed very difficult to quantify them at the current level

of description. The simplest assumption is that upon crossing
the shock these particles behave more or less like the pro-
tons. In other words, their excegever u,) velocity, i.e.,
u;—U,, is spread around, and we assume that;,=Vr.

For the purpose of simplicity and for extracting the depen-
dence upormA/Z we also assume that the thermal distribu-

particles that interact with the wave adiabatically. Thus, forlions of all species is equivalent to that of the protons
v=1, the distribution of escaping particles can be given by

FIG. 4. Escape probability=0.2 (upper panel and e=0.3
(lower panel. Solid lines correspond to E¢60), whereas dashed
lines correspond to Eq58), with k, from Eq. (62).

Eq. (34). It should be borne in mind, however, that the maxi- Ny v?
mum of the escape distribution is rather closevte 3 for fazmeﬂ{ - F) (67)
small e, so that formulag61) and(64) provide virtually the 2a 2a
kernel of the distribution of escaping particles, whereas EqQs. o ]
(33) and(34) describe the tail of this distribution. Then we may calculate the dens[§8] of injected particles
VI. INJECTION EFFICIENCY VERSUS MASS TO CHARGE 2dv —

RATIO Ninj= f T—ufp [aleso (68)

v,<—Ug olv

One important aspect of any injection mechanism should

be its dependence upon the mass to charge ratio of differewhereﬁescz Qe forv<1 andﬁesc: Vescfor v>1[see Egs.

species. This is obviously so in the mechanism suggested i@4) and (65)]. The last equation can be evaluated to
this paper. Indeed, in the cage<l, the leakage upstream

must be controlled by the paramet&pp,, where p,

=(Vri./w,)(AIZ), is the Larmor radius of a speciesi.e., @ \/§n2a o, =

V-, is a corresponding thermal velocity, aAdandZ are the M= N 753 f v7dvQesdv)exy —

Ta 2 JU

mass and charge numbers, respectively. It is clear that

strongly magnetized particle&fp,<<1) cannot be injected, . )

whereas unmagnetized particlégp,>1) are injected as where v =maXuvy,Uoa} Uoa=UoA/Z. According to Egs.

readily as in the case without magnetic field. For protons thi§60) and (64) and Fig. 4, the functiof) c{v) rises sharply

parameter ikop,=v,=¢ almost by definition, simply due from Q.{v)=0 to become approximately constant,

to the fact that both the wave and the thermal distribution

downstream originate from the same upstream flsee Eq.

(36)]. To confine particles effectively the parametemust 0 0 — %

. QESC_QO_ &g,

be rather small but not too small—otherwise the upstream 5

turbulence cannot be excited by a weak proton beam. This

means that protons are close to a watershed between the o regionvy+os<v=1, where o=3%%10x. For v

species that cannot be injected by t_h's mef:har(.ﬁ;lese are  ~1 the escape flux is dominated by adiabatic particles. To

apparently electrons onlyand particles with higheA/Z o = )

whose injection efficiency increases. simplify the algebra we substltuiﬁescfﬂo into AEq. (69),
According to Sec. V, the most important physical quantityand shift the lower limiv y—v{=v+ oe whereo~ o and

that regulates the escape flux is the threshold velagity —extend the integral tee. Starting fromyv =1 we may use the

which is the same for all species, E¢3), provided that in  high energy asymptotic resultsc=(1—1/v)/2, multiplied

the definition of the normalized velocity Eq.(9), one sub- by 1-2€,, to compensate for the above extension of the

stitutesw, ,= w, (Z/A) instead ofw, . Thus, the subjects for contribution of resonant particles. This simple interpolation

injection are only the particles withv>v4=3, or Yyields for the protonsy= nﬁ]j/n2p

v? 69)
2v§a -
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n - shock front may be calculated from a simple energetic bal-

e=0.2 ance.

: First we note that the beam energyrisn,wz/2, where

8 |vp|=uy is the beam velocity in the upstream frame, apd

is its density. Since it scatters back quasielastically, around

6 scattering centers that move at the low veloeit€ ., only a

=03 Calvp<<1 fraction of beam energy may be converted into

T waves. A complete quasilinear theory of cyclotron beam re-

2 laxation in homogeneous plasmas has been developed in Ref.
/// [19]. One can show that the expression for the wave energy

released by an unstable beam as calculated by these authors

AlZ is also applicable for the case considered here. Thus for mag-

netic field perturbation upstream we may write

1 2 3 4

FIG. 5. Injection efficiencies of different species normalized to
proton efficiency as functions of mass to charge ratio and for dif- Bfu A

ferent wave amplitudes. y— anmpCAvb. (71
1 (1 ) ( 1 ) ( vk ) We have merely introduced an additional factox
=5—|5"Qo|P - ~Av,/lv,<1, whereAy, is the beam width in parallel ve-
Tm27027 70 e, \ vaw, o " i

locity. This factor appears because the beam relaxation oc-
Q, p( v&z) curs under the constraint of conservation of therg par-
* —

2
+ o VineX o (70) ticle flux fv,fydv, on a given diffusion line v?
2

v2 + (v,+Ca)?=const in velocity space rather than under the
conservation of the phase densfti,dv, along this line. The
where reason for such a factox may be understood from the ob-
servation that particles starting to escape at velocities
2 (x ~ —Av,, while being turned around can hardly acquire posi-
d(x)=—= J e “dt. tive velocities that are appreciably larger thamuv, before
Ja Jo returning to the shock. Again, because the above mentioned
particle flux must be zero. Since the downstream figld
For other SDECies one may obtain a similar formula from Eq.: rBLu , wherer = ulluz is the shock Compression ratio we
(69). We illustrate it by plotting the injection efficiency,  may rewrite Eq(71) as follows:
normalized to the proton efficiency. This is shown in Fig. 5

— - 1 1

VII. A SIMPLIFIED SELF-CONSISTENT MODEL where M,=uv,/C,, and 7=n,/n, is given by Eq.(70).
So far, we have considered particle escape under a pre2"C€ 7(€) is a monotonically increasing function, E(2)
scribed wave spectrum downstream. However, as we emph4€termines a unique value efand thus a unique injection

sized, this escape mechanism ought to possess a very distifigfe 7- ) i ) i
self-regulation. Indeed, there is a strong negative feedback COnsider first the cas ,>1. To the leading approxima-
between the wave intensity and the density of the escapinP in <1 and substituting,=v3s, r=4 into Eq.(70),
beam—if the beam is weak and excites thus only weakVe obtain

waves, the leakage will be increased to produce stronger 6 0512

waves. Similar arguments lead to decreasing the leakage if = * F{_ )

the beam is too strong. Therefore, both the beam intensity 7T 5 RS 652 73
and the turbulence amplitude must rest at some definite ang
unique level. What makes this situation differ from the stan-
dard quasilinear theory of beam relaxation in homogeneous 1 px2
plasmas is that “beam relaxation” here means actually its —Z:CMAex;< - %) (74)
return to the shock front via the cyclotron interaction with & 6e

the self-excited MHD wavegsee Ref[13] for a detailed

quation(72) then rewrites

- . wher
description of this procegsHence, a plateau does not form ere
in fact and the relaxation lenglly means simply a distance 192
at which the majority of beam particles are turned around C= Wvﬁ]/\.

and swept back to the shock. The nonlinear wave phenomena

are assumed to be unimportant, which implies that the COTEQr CM,>1, and assuming~ 1, we thus obtain
responding time scaley >1g/u;. Thus, the fraction of the

beam energy that may in principle be channeled into the SZ:UEZ/GLA, (75)
plasma heating through the nonlinear wave-particle interac-

tions is correspondingly small, and the wave energy at thavhere
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FIG. 6. The actual injection rate calculated from E£Q) (solid
curve); the approximations are given by E8.3) (dotted curve
and(77) (dashed curve

*2
L.=Inl M Ut—h
A ABINM,)-
For the injection ratey we have

3L,

= 7
7T 16AM g2 (76)

Here one may pub}=3. It is seen that the injection rate

formally vanishes with M, as 1;~M,§1 In M,. However,
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FIG. 7. The parametee (solid curve and injection ratezn
(dashed curveas functions ofyj=32AM4c; .

cape from an oblique shock, where for a particle to catch the
shock it must move at the speag/cosnBzzuzls along the

field line. Here® g, is the angle between the downstream

magnetic field and the shock normaBuch an escape was
extensively studied in Ref39]. Even if the shock is quasi-
parallel but the magnetic field is locally oblique to the shock
normal most of the time, the same kinematic escape condi-
tion holds for magnetized particles. As we have seen in Sec.
VI, most of the protons must be magnetized, and in the case
of the turbulence dominated by a circularly polarized Atfve

already fore<1/4, B, ,~B,, and the estimate of the wave wave the lowest energy particles that can escape have a ve-

amplitude might need some correction. Clearly, the abgve

scaling is not applicable in the lim&,— 0 in which » van-

locity v=vu=1/2 (vy=U,/2¢ in unnormalized variables
According to the phase plane shown in Fig. 3 these are the

ishes. For such a weak magnetic fields different meChaniS%rtides that move towards the shock being close to the

of beam relaxation must be considered.
For moderate values ef<1, Eq.(72) can in principle be
easily solved numerically withy(e) given by Eq.(70). We

point wherea= ¢+2z=0; u=puy<0. Therefore, they fall
into the cyclotron resonance with the wayeé+z=0, ¢
=—z=—pugqut, but they spiral as electrons in the unper-

know already that the above formulas are applicable fokyrhed fieldB,, trying to follow the magnetic field line and

rather small values af <0.2. On the other hand,cannot be

to minimize thus the Lorenz force, the only force in our

too large in any case, in fact it cannot be larger than abouhodel that can prevent their escape. The inclination of their
0.4 to satisfy Eq.(72). Thus, what is actually needed is a orpit to thez axis is, however, about a half of that of the

reasonable but simple approximation gfs) in Eq. (72) in
the interval 0.Z¢=<0.4 to resolve Eq(72) for . It is con-
venient to use the approximation

= 1_028+C382, ( 7)
which is shown in Fig. 6 foc;=0.0105,¢c,=4.91, andc,
=6.58. Denotingy=32A M Ac;, we obtain the following so-
lution for e as a function of:

1 1 4
\/ C_g(cs q)

)

~2(c-q) - 8

€

This is shown in Fig. 7 together with(q). One sees that the

injection rate depends rather slowly dh,, as in the case of
higherM , (smallere) considered earlier.

VIII. LEAKAGE PROCESS IN A NUTSHELL

magnetic  field: v, /v,= \/vx2+ vyzlvzz(l—v)/szllza
whereasB, /B,=1/e.

As we have seen in Sec. VI, in the case of very small
values ofe these particles make the bulk of the leakage.
Since they are concentrated in a relatively small region of the
downstream phase space, this allows us to forecast their en-
ergy and angular distribution, just as they appear upstream.
First, their energy per mass in the downstream frame must be
somewhat abov&=v2/2, wherevy,=3 in the dimension-
less variables. Furthermore, singce /v,=1/2¢>1 the en-
ergy of leaking particles is predominantly in the perpendicu-
lar motion. In the unnormalized variables we thus have

2 2 2
m w; 2>mu1 Uth (79)
—— =,

E:EL?«Ek_gvth 2 27

whereas the parallel energy may be estimated £3s

The mechanism of ion leakage considered in the previous=42€, . It should be noted that the pitch angle scattering

sections unfortunately requires more calculations than seemgpstream may change this relation to a certain extent. On the
to be appropriate to its physical simplicity. At a phenomeno-other hand it is in a reasonable agreement with the results of
logical level this mechanism is almost as simple as the eshe strong shock simulatidr®,23).
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IX. INJECTION EFFICIENCY. COMPARISON and may be interpreted as a thermostat transparency coeffi-
WITH HYBRID SIMULATIONS cient. According to Sec. IVr— 1 asv —oe. If there were no
scattering upstreamL(=0), Eqg.(81) would be equivalent

As we emphasized in Sec. | the calculation of the flux of . A ) i
leaking particles alone does not solve the problem of injecE0 Eq. (65 that yields the distribution of escaping particles

tion. The main result of injection theory should be the highglvens:th‘.3 ther.mal dlsltnbutpn d%\:?vns#rr]ealr(m ’ T_ gLeneraI,
enery ssympolcs of a specrum nat emerges i @ sieadfy 1 1 e equelon [ The Kemel L wes
state when the leaking particles repeatedly cross the shoc ) C i . au

and achieve energies sufficient for describing them by thevere also StUd'.ed. for=1 and various functiongy .Wh'.Ch
means of the standard theory of diffusive shock acceleratioﬁhOUId have mimicked the effect of thermostat filtering (
(see, e.g., Ref15]). The mathematical formalism of injec- <1). . o . . .
tion theory was developed in Ré¢fL3]. Now we may apply it . Expres;mn(SZ) |mp!|es only an adiabatic leakage which
to the distribution of leaking particleghermostat distribu- IS approp_rlate for particles with>1 (Sec. IV). If the reso-
tion) calculated in the present paper. We also have to bear pant particles leak as well, the escape probab(llggqfrom
mind that particles that cross the shock more than onc&d- (69 should be added to in Eq. (82), and it will

(higher generation of injected particles, beam 2, etc.; see Figiominate in the region=<1. However, unlike the leakage of
1) are still subject to the filtering on their way back upstreamad|abat|cally interacting particles, the leakage of the resonant

due to the interaction with the downstream trailing wave. AsP2rticles is very sensitive to the wave polarization. This may
we have seen, this interaction weakens with the energy ang€ understood from inspection of Fig. 3 drawn for an
the thermostat becomes transparent to particles with wave. The magnetoson((_vl_S) wave case can be obtalngd k.)y
>w, Ik, (Unmagnetized particlesWith this in mind, the flipping the phase portrait in Fig. 3 since the MS polarization
whole algorithm may be outlined as follows. corresponds te<0, and the Hamiltonia37) is invariant to
Suppose that some fraction of the downstream plasmi'€ transformatiore— —e€, u——u. Thus, the candidates

leaks upstream to form a=0 the one-sided distribution 0" the resonant leakage from an MS wave would be the
F(v), v,=v.<0 (see Fig. 1 HereV’ is the velocity in the particles marked by 2 and 3 and these alike, i.e., those cir-

shock frame, and we keep our notatioifor the wave frame cglatlng around a fixed point ai=.— m (mod 2m), x>0 in

in the downstream mediurfaimost the downstream frame Fig. 3. However, they have relatively low values of and

Due to pitch angle scattering in the upstream medium thesgPugh estimates show that they cannot escape. At the same
particles turn around and eventually cross the shock in théme, according to our discussion of the leakage from the

downstream direction forming the distributida* (v), v’ thermostat in Sec. Ill such particles can potentially escape
>0 which can be written a§* =L,F, again atz=0. The from the region immediately behind the shock front, pro-

linear operatot ;, the upstream propagator, can be obtained’ided that the wave fi_eld is sufficiently perturbed. This point
from the solution of the kinetic equatidi3]. According to  Should be borne in mind when we compare our results with
the thermostat model in ugSecs. | and Ili, these particles NYPrid simulations below. L

penetrate further downstream through the thermostat, mixing MOSt of the hybrid simulations are essentially time depen-

up with the hot downstream plasma. At the same time the$€nt: Since the shock runs through a finite spatial domain.
are pitch angle scattered on the background turbulence, sgAuation(81) implies a steady state, and for this rather pre-

that some of them acquire negative velocities and move backMnary comparison we select only a hybrid simulatj@g]

to the shock. We denote their distribution within the thermo-Where the simulation box was anchored on the shock front
stat byF~. ForF~ we thus have and a quasistationary spectrum was developed. A more thor-

ough comparison with other numerical results will be done

Fo=L,L,F+fy. (80)  elsewhere. As we have seen, the most important parameters

that determine the distribution of leaking particles are the

Herel, is the downstream propagator, afig is the distri-  amplitude, the wave number, and the polarization of the trail-
bution function of the downstream thermal plasma thating wave. The injection spectrum is then formed depending
emerges upon the first crossing of the shock interfadgth-  primarily on the shock compression, and to some extent on
out higher generationsin Secs. IV and V we assumed for the spectrum of the background turbulence upstream and
simplicity that f,, is a Maxwellian distribution so that downstream that enters the propagatorsindL , in Eq.(81)
L,fy~fw, because it is isotropic in the wave frame. Now [13,40. For the purpose of comparison we assume the MS
the calculation of the injection spectrum that appears juspolarization as observed in Ref23] (see, however, Ref.
upstream of the shock is nothing more than the calculation di27]), and therefore discard the contribution of resonantly
the spectrum of leaking particles already made in Secs. I\escaping particles.

and V, with f, in Eq. (65) replaced byF~ from Eg. (80). All other quantities needed for calculation of the injection
Thus, the distribution of injected particles fér takes the spectrum can be obtained from the above results gMen
form andM g and from RH conditions. However, shocks that form
in simulations do not follow the latter exactly, due to the
F=7L,LF+7fy. (81)  losses through the boundaries of simulation box and other
reasons discussed earlier. Therefore, it is appropriate to take
Here the functionr(v) is given by[see Eq(65)] some critical parameters directly from simulations. For ex-
ample, the total compression ratio obtained in R28] is
)= 2 (82) close to 4.2, exceeding the limiting value of 4. At the same

I—uplv & time the shock is noticeably modified, so that the local com-
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pression ratio is substantially smaller. We make our compari-
son takingr =4.0, which also corresponds to a strong shock.

M. A. MALKOV

The downstream temperature slightly deviates from the RH=

prescriptions as well, and we take it from the simulations £
(T=2x10° K) in order to ensure coincidence of the thermal
parts of the spectra. The amplitude paramettr the shock
of M,4=5.25 in[23] may be calculated using E@72) or
(78). We estimate\ =Av, /v,~1 which is appropriate for a
strong shock, and obtaia~0.3. Thise is in reasonable
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agreement with the simulation results. It should be remem-
bered, however, that E¢78) was derived for the resonant
leakage and a somewhat different although very similar
equation should have been used in the case of adiabatic leal
age, which would have given a somewhat higheHow-
ever, some of the resonant particles probably leak in the
simulations, and we adopt E78) for our estimate ofc.
Furthermore, in the self-consistent determinatiors of Sec.
VII only the “first generation” particles are taken into ac-
count, which clearly leads to an overestimateidi Eq. (72).
We calculate the wave numbky from the condition of

Maxwellian——

-6
-2 -1

0
log X 0Energy (keV)

FIG. 8. Particle spectra behind the shock, pitch angle averaged
in the shock frame. The squares are from the hybrid simulations
[23]. Thin line is a correspondent Maxwellian fit which is taken as
\ - a source ternfy, in Eq. (81). The solution of this equation is shown
frequency conservation across the shock transitikgl, with the heavy line. The dashed line shows the solution of the same
=k (Ma—1)/(Mpa— ﬁ)- wherek, is an upstream wave equation forr=1. The dotted-dashed line indicates the slope of the
number that we in turn obtain from the resonant conditionspectrum appropriate for high energy particles, and a shock com-
k,vp= w. that we wrote here to the leading order ivily. pression of 4.

In general, the diapason of unstable wave numbers may be

quite broad since the escaping beam is broad,inAn ac-  methods would produce similar injection rates if the latter is
curate calculation of the most unstalidés a difficult prob-  understood as an amplitude of the high energy asymptotics
lem, since the beam distribution depends on thias well «E~?. The lack of low energy particles in the analytical
and we restrict ourselves to a simple estimate based on ttepectrum should be attributed to the absence of resonantly
mean beam velocity. That is, the escaping beam occupies ieaking (or reflected particles that are probably still present
velocity space at least an intervatvy, o, /Kot Ur<v, in the simulations. This might also slightly underestimate the
<0, wherev) is a dimensional particle velocity in the shock injection rate, as is perhaps the case in the simulations be-
frame andvy, , is a dimensionless threshold velocity for an cause of the losses. At the same time we feel that whatever
adiabatic escapgsee text below Eq(82)]; v,a~1+¢c is  physical ingredientglike the resonantly leaking particles
roughly independent of the wave polarization. From theseare added to the above calculation scheme it will not change
considerations, we obtaia, /kqu,~1.1. the injection rate significantly. This is due to the strong self-

We compare our analytic calculatiofsee the Appendix regulation of the leakagénjection process. The shock al-
for more detailg with the hybrid simulation$23] in Fig. 8.  ways seems to leak at a critical rate which is just enough to
The downstream Maxwellian is the same in both cases, and @onfine the downstream plasma through wave generation, as
is drawn with the thin line. The squares are from simulationdiscussed earlier. This fundamental aspect of particle injec-
whereas the heavy line shows the result of integration of Eqdion at quasiparallel collisionless shocks has been foreseen
(81) and(Al). The slope of the energy spectrunt ~ 7, with by previous authors; e.g., Ref4.,9,42.
o=3/(r—1)~1 that must form at energies sufficiently
higher than the thermal energy according to the standard
theory of diffusive shock acceleration is also shown by the
dotted-dashed line drawn at arbitrary height. Finally, the
dashed line shows the solution of E§1) with =1, i.e., for Existing theories of shock dissipation and shock accelera-
a completely transparent thermosidt). tion have not included the injection of the shocked plasma

The first conclusion that may be drawn from Fig. 8 is thatinto the foreshock region self-consistently. Important in-
the effect of particle filtering by the thermostat is very strongsights provide hybrid simulations, but being substantially
and reduces the injection rate by one order of magnitudéimited in space, time, and particle energy, they miss the
compared to the case of “free” injection, i.e., without the backreaction of accelerated particles on the shock structure
strong wave particle interaction downstream. Furthermoreand, therefore, on injection and shock dissipation. Monte
the agreement with the simulation spectrum is very goodCarlo simulationge.g., Ref.[43]) include the backreaction,
although the latter does not exhibit a correct high energyut they completely ignore the feedback from the turbulence
asymptotics, most probably due to the losses of high energgxcited by injected particles themselves which may reduce
particles. It is reasonable to assume that if there were no sudhe injection rate by an order of magnitude without major
losses a correct spectral slogeith probably somewhat changes in the flow structure.
higher amplitudgwould be achieved in the simulation at an  Although the collisionless shock phenomenon is very
energy where the slope now has a minimdimersection complicated, the necessary information about the source of
point with the analytical spectrumThis means that the two leaking ions can be inferred from the ordinary jump condi-

X. OTHER POSSIBLE APPROACHES, EXISTING
AND PROSPECTIVE
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tions. The latter show that at least behind a strong shock thielealization in the shock environment. At the same time, it is
plasma distribution is so broad that a very large fraction of itoften the case in wave-particle interaction that the form of
can in principle escape upstream. This will certainly smeathe wave field is not important for particle trapping—only
out the subshock as a distinct structure, unless this therméhe depth of a “potential well” is important. The worrying
return is choked by fast unstable coupling with the incomingsituation here might be created by resonantly escaping par-
flow. Thus the problem is not the source of the particles to beicles(Sec. \j, that seem to require a “fine tuning” in wave-
injected upstream, but rather the opposite, i.e., how to conparticle interaction. On the other hand, the background tur-
fine most of them on the downstream side of the shock andyulence, that was assumed to be sufficiently strpBg.
of course, how to calculate the distribution of the rest which(23)], certainly diminishes the role of this fine tuning by
is leaking. destroying the integrals of regular dynamics. Put another
One may attempt to do this in several ways. First, one camvay, a particle escapes not because it stays in exact reso-
invoke the processes occurring at the very shock interfaceance with the wave for a long time which would hardly be
and immediately behind the shock, before the thermalizatiopossible for any realistic wave field at a shock, but because it
of the plasma flow is completed. One obvious candidate fomppears at the right place in phase space while being close to
this is the electrostatic barrier appearing, e.g., at the sulthe shock front. Otherwise its motion may be quite irregular.
shock in the high Mach number hybrid simulatid8$ (some  The key element of our treatment, that allowed us to calcu-
further discussion can be found, e.g., in Re&f4]). This is  late the escape flux under a restricted knowledge of chaotic
critically important in the quasiperpendicular shock mecha-particle dynamics, was, of course, the ergodicity assumption.
nism [45]. Quest[9] noticed, however, that its impact on The injection scheme presented here will require certain
inflowing ions in strong quasiparallel shocks is very modesimodification when applied to the case of finitgs. Scholer,
due to the remarkably perfect compensation of the electrokucharek, and Trattner demonstrated, by means of hybrid
static force with the Lorenz force. On the other hand, thissimulations[37], that the contribution of particles staying
conclusion may not be true for the backstreaming ions. sufficiently long at the shock front is increasingly important
The next possibility consists of the already mentionedin this case. Within our scheme, these particles can be for-
subshock reduction by a pressure gradient built up by thenally identified with the particles that are in nonlinear reso-

intense return beam in front of the shock. This is the mechanance with the trailing wave, have the averaged velaﬁty
nism at work in Monte Carlo simulatiorj&3]. In fact, itis  ~ _y, (marginal escapeand are close to the shock front.
the only mechanism of self-regulation of the injection Pro-Upon interaction with it they gain energy, although the
cess at the subshock level in Monte Carlo models, sincghechanism whereby it happens is yet to be studied.

these operate under a prescribed scattering law. It is, how- Generally, the tight link between the escape flux and the
ever, not to be confused with the process of a large scalgave amplitude emphasized in this paper is the essence of
shock modification by diffusively accelerated high energythe self-regulation of the shock dissipation process given,
particles which can also reduce the subshock. Although theS@_g_, by Eq(71). However, depending on the age and size of
two processes of shock modification are physically verythe shock this may be not the only way the shock regulates
similar, the latter operates over a much larger spatial scalgis own energy dissipation and particle acceleration. In non-
and depends, in addition to the injection rate, on factors thajnearly accelerating shocks the subshock strength may be
have nothing to do with the subshock physics, like losses &jgnificantly reduced. Also, the deceleration of the flow in
highest energie$46]. Note that the self-regulation mecha- front of the shock by high energy particles drives the sub-
nism suggested in this paper works very efficiently regardshock Mach number to lower values, which may have an

less of(or along with the flow modification in the precursor jmportant impact on both the injection and the overall flow
and the above-mentioned feedback from the high-energy paktrycture near the shock.

ticles.

The simplified model considered here gives explicit for-
mulas for the distribution of back-streaming particles upon XIl. CONCLUSIONS AND DISCUSSION
the wave amplitudéhrough the paramete). The latter has,
in turn, been calculated by considering the transformation OEa
beam energy into the wave energy. This upstream wav
driven by the unstable beam, may also be subject to one q
the known saturation mechanisms, especially in the casg
when a compressional component of the wave field is adde(g,

Besides the quasilinear beam relaxation considered herﬁlasma and weaker leakagejection). This means that the
these may be wave steepenidy], other processes of non- MS turbulence is more suitable for maintaining a distinct

I|£19ear’\\/lvavettrzalnsformaqort\hor beam trapdp(m;gde,he.g.,tﬁef. uasiparallel shock structure than tie turbulence. The
[29]). Nevertheless, as in the case considered here, eV\’agﬁectrum of high energy particles accelerated out of the

f”‘mp"t.“de sho.ul_d be ca_llc_ulayed as a functpn of the bean[3ackstreaming beam is calculated with the help of injection
Intensity, providing the injection efficiency with no param- theory[13]. The resulting spectr@) are in reasonable agree-
eterization. ment with the broad dynamical range hybrid simulations to
date[23], (ii) evolve into a standard power law at higher
energies, andiii) have an intensity that may easily exceed

We have assumed the unperturbed particle motion to bthe threshold of the nonlinear acceleration regifeee be-
determined by a monochromatic wave which is an extreméow).

We have demonstrated that the large amplitude wave train
n efficiently filter the warm downstream plasma in its leak-
ge upstream, scattering back typically no more than 5% of
e downstream protons in the case of a strong shock and a
ft-hand polarizedAlfven) wave. MS-type polarization re-
ults in noticeably better confinement of the hot downstream

XI. LIMITATIONS
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It is needless to say that a reliable calculation of injection as 1 3
rate, that takes account of all essential interrelations between K1= 73— [2 COS+3 COSh_l(a_s—l)} —1] . (A2)
physical processes like the leakage and/or reflection, wave d
generation, particle trapping, and shock modification by enywhere
ergized particles, could dramatically improve our under-

standing of how strong shocks accelerate particles. Recent B I'(1/3)
analytic solution$46,4§ for nonlinearly accelerating shocks a= 34’3F(2/3)A§73

(i.e., shocks whose structure may be almost entirely deter-

mined by accelerated partic)eshow that the dependence of and

the acceleration efficiency upon the injection rate has a criti-

cal character allowing for extremely different solutions at . 5 2

quite close or even the same injection rates. Therefore, the = fo dZ(1=25¢2)7ID(=0).

studies of the energetic partidieosmic ray production 49—

52] in such shocks or, in other words, of how the shockHereD is the diffusion coefficient in velocity space normal-
distributes its energy between thermal and nonthermal comized to its value at=0 as a function of the resonant (

ponents of the shocked plasma, should perhaps be focusedu,+ w/k) parallel velocity of the ions in the shock
on the subshock where particles are injected into the acceframe.

eration process. The necessary subshock parameters should;The coefficientx has a similar meaning as;, but it is
however, be determined self-consistently from kinetic nonvelated to the particle transport in the upstream medium,
linear calculations of the shock structure like those men-
tioned above.

13— v T2Vy(6—y)
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APPENDIX and
In an expanded form, E¢81) can be written assee Ref. 1 (7
[13] for further detaily A= rar “dZ(1- 221 ?)2ID(= Q).
2m2(kK) 2R 2 (o NN Here{' =V—u, is an upstream analog ¢f calculated for
Flv)= 373 2(2/3) T2 f n dn Al| k1 Y the upstream absolute value of particle veloaityNote that
in Ref.[13] the expression fok; (Appendix Q was given
) erroneously only for the casg>6 (even fory>1) and the
X Al K1/3E 77) F(vy)+7fu(v). (A1) formula for y contained a misprint. At the same time the case
vy<6 has been actually considered in numerical examples,
Here the following notations have been used: however, with the correct numerical values of and 7.
Generally, there still exists some arbitrariness in choosing
{+=v*Uy, the parameterg and x, since the details of the spectra of
background turbulence are not determined in injection theory
5 = [13]. Nevertheless, the resulting particle spectrum may be
v1= VP =2AU(L, 7+ 7). Au=ui—uy, calculated because it is rather insensitive to parametarsi
k1, although they slightly influence the slope of the spec-
Y=\ui+{ L —2Aul n—uy, trum at high energies. In example given in Sec. IX we put
xk=1.3 andx,=1.15, ignoring their possible dependence on
1no=min(1,{ _/2Au). particle energy. Note that the case- k;~1 corresponds to

a simple assumptiob® = const, which is reasonable for low
I is the gamma function, Ai denotes the Airy function, andenergy part of the spectrunj, <u,. In this case a slightly
n=2. softer spectrum is produced at high energies for sufficiently
The coefficientx, is a certain functional of the spectral high downstream temperature. This was shown in R,
density of the background turbulence downstream, that enahere such values of and x; have been employed.
sures pitch angle scattering, and has been discussed alreadyThe solutionF(v) in Eq. (Al) is in fact a one-sidedv,
in Sec. lll. We takek; from Ref. [13], Eq. (67), using <O in the shock frameisotropic(in the downstream frame

slightly different notations: part of the distribution function calculated z+0. To per-
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form the matching with the high energy standafdly iso-
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are given in Ref[13]. For the purpose of comparison with

tropic) power-law spectrum, a spectrum far downstreamthe simulation spectra given in R¢23], this far downstream
must be obtained, since only the latter is also isotropic in thespectrum is pitch angle averaged in the shock frame and
downstream frame at lower energies. The necessary formulasawn in Fig. 8.
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