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Ion leakage from quasiparallel collisionless shocks: Implications for injection
and shock dissipation

M. A. Malkov
Max-Planck Institut fu¨r Kernphysik, D-69029 Heidelberg, Germany
~Received 30 June 1997; revised manuscript received 6 April 1998!

A simplified model of particle transport at a quasiparallel one-dimensional collisionless shock is suggested.
In this model the magneto-hydrodynamics turbulence behind the shock is dominated by a circularly polarized,
large amplitude Alfve´n wave originated upstream from the turbulence excited by particles leaking from the
downstream medium. It is argued that such a wave, having significantly increased its magnetic field during the
transmission through the shock interface, can effectively trap thermal ions, regulating their leakage upstream.
Together with a background turbulence this wave also plays a fundamental role in thermalization of the
incoming ion flow. The spectrum of leaking particles and the amplitude of the wave excited by these particles
are self-consistently calculated. The injection rate into the first order Fermi acceleration based on this leakage
mechanism is obtained and compared with computer simulations. The related problem of shock energy distri-
bution between thermal and nonthermal components of the shocked plasma is discussed. The chemical com-
position of the leaking particles is studied.@S1063-651X~98!01610-9#

PACS number~s!: 52.35.Tc, 96.50.Fm
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I. INTRODUCTION

The problem of energy dissipation in collisionless shoc
in plasmas is old and exceedingly difficult@1–9#. Moreover,
there exist persuasive theoretical arguments@10,11# corrobo-
rated by numerous simulations~e.g., Ref. @12#! that this
problem cannot be solved by considering exclusively
thermalization of the bulk plasma flow when the latter pas
through the shock. A significant part, if not almost all, of t
energy of a strong large shock may be channeled into a s
minority of particles accelerated through multiple crossing
its front. This acceleration mechanism is known as the fi
order Fermi or diffusive shock acceleration. However, t
does not circumvent the problem of collisionless thermali
tion. The reason for this is that a small fraction of therm
ions that leak or reflect from the shock play a crucial role
the collisionless energy exchange between the bulk upstr
motion and thermal and/or nonthermal~accelerated! compo-
nents of the downstream plasma. These ions generate w
in the foreshock region whose growth rate and amplitude
directly related to their density. Yet they provide a seed,
injection, population for the further acceleration. These t
aspects of the shock dissipation are clearly interrelated.
wave excitation these particles create a scattering envi
ment, allowing them to cross the shock repeatedly, whic
necessary for the Fermi mechanism to work.

One of the most important parameters of collisionle
shocks is the angleunB between an ambient magnetic fie
and the shock normal. While so-called perpendicular sho
(unB.p/2) should clearly have a distinct shock transiti
because the hot downstream plasma cannot penetrate
stream for more than one ion gyroradius, their parallel co
terparts (unB!1) are not so suitable for confinement of th
heated downstream plasma, since it may penetrate far
stream moving along the field lines. We will confine o
consideration below to this latter category of collisionle
shocks. In general, shocks withunB,p/4 are somewhat su
PRE 581063-651X/98/58~4!/4911~18!/$15.00
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perficially referred to as quasiparallel, whereas the r
(p/4,unB,p/2) are referred to as quasiperpendicular.

It is important to realize that the distribution function o
the backstreaming particles cannot be inferred solely fr
the macroscopic parameters of the downstream plasma
if the thermalization mechanism is properly understood. O
obvious reason for this is the following. Among the bac
streaming particles one can find not only those which sim
arose from the randomization of the upstream flow at
shock~as backscattered from the downstream medium or
flected from the shock interface!, but also the particles o
these two types which crossed the shock more than once
therefore have gained some energy@13#.

The above arguments suggest that the injection prob
can be divided into the following two tasks:~i! Given the
shock conditions, one determines the distribution of partic
originating from the upstream flow after they crossed
shock for the first time. Subsequently, one identifies th
particles which are also capable of crossing the shock
reverse direction~first generation of injected particles!. ~ii !
One follows the~stochastic! trajectories of these particle
when they multiply recross the shock, until they are sw
downstream or have achieved energies acceptable for
standard description of diffusive shock acceleration~see,
e.g., Ref.@14# or @15# for a review!.

The first task belongs to collisionless shock physics@6,7#,
and can at least formally be treated independently of
diffusive shock acceleration process. The second constit
the injection problem itself as a part of diffusive shock a
celeration theory, and can be formulated in more detail
follows. Suppose task~i! is solved. Then, given the distribu
tion of thermal particles that are able to penetrate into
upstream region, one calculates the high energy asympto
of their distribution. This provides the coefficient in th
power-law solution of the standard acceleration theory a
thus the injection rate. It cannot be obtained within the st
dard theory, since the latter is unable to describe low ene
4911 © 1998 The American Physical Society
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4912 PRE 58M. A. MALKOV
particles with anisotropic pitch angle distribution.
The solution of injection problem~ii ! as formulated above

was obtained analytically in Ref.@13#. The high energy
asymptotics of this solution indeed matches the power law
the standard theory. At the lower energy end it smoot
joins the downstream thermal distribution. This thermal d
tribution that determines the flux of leaking particles h
been simply assumed to be created by a unspecified s
randomization process, in other words due to the action
‘‘thermostat.’’ In this paper we suggest a simplified therm
stat model. In the next subsection we put it into the gene
context of collisionless shocks.

Thermostat model

Some of the thermostat properties are readily known fr
ordinary Rankine-Hugoniot~RH! jump conditions that con-
stitute the conservation of mass, momentum, and ene
fluxes across the shock@16#. In the simplest case when bot
the magnetic field and the flow velocity are perpendicular
the shock front, the RH conditions are the same as in o
nary gasdynamics:

r1u15r2u2 , ~1!

r1u1
21P15r2u2

21P2 , ~2!

1

2
r1u1

31
g

g21
P1u15

1

2
r2u2

31
g

g21
P2u2 , ~3!

Here the index 1 refers to the upstream medium wher
index 2 refers to the downstream medium~in all three equa-
tions!, r.mpn, u, andP are the mass density, velocity an
the gas kinetic pressure, respectively, andmp is the proton
mass. The adiabatic indexg can be set tog5 5

3 . The pressure
and energy of the magneto-hydrodynamics~MHD! waves
that are implied to participate in the shock thermalizat
process as a substitute for the binary collisions are negle
here for the following reasons. First, if the initial state~1!
refers to the far upstream region in which the backscatte
particles do not penetrate and the waves are thus not pre
the left hand sides of the above equations are written
rectly. If the final state~2! is also taken far downstream
where the thermalization process is completed and the
ergy of the waves excited at the shock interface is damp
the same is true for the right hand sides. Even if the final
initial states are taken substantially closer to the shock in
face, these equations correctly describe the jump relation
the case of a very strong shock. Indeed, the waves tha
excited in a highly supersonic and superalfvenic upstre
flow via cyclotron resonance with the beam of backstrea
ing particles, are the transverse (dB'B0) MHD waves, and
their amplitudedB cannot exceed the unperturbed fieldB0
since otherwise the beam would be trapped in this wave
carried back downstream. Therefore, considering str
shocks withMA

2[u1
2/vA

2[4pr1u1
2/B0

2@1, we may neglect
the contribution of the wave energy upstream. Downstre
it is increased by a factor;(u1 /u2)2 due to the shock com
pression of the perpendicular component of the wave m
netic field, but the wave energy may still be neglected co
pared to the thermal and the bulk motion energy in stro
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shocks withMA@1. For whatever reasons, the RH cond
tions have been observationally proven to be quite reliabl
collisionless shocks@17,18#.

In the case of high Mach number shocksMS
2

[u1
2r1

2/gP1@1, the RH conditions simply yield~for g5 5
3 !

u1 /u254, and the downstream temperatureT253mpu2
2. If

one assumes that all downstream particles that have ve
ties vz,2u2 ~where vz denotes the normal to the shoc
front velocity component, and the shock is moving in t
negativez direction! can cross the shock, this informatio
about the thermostat suffices to obtain an injection soluti
On the other hand, such an assumption can only give
upper bound on the injection efficiency, and it highly ove
estimates the latter. In principle, many particles in such
high temperature downstream distribution have negative
locities in the shock frame of reference and, therefore,
potentially escape upstream. But this would be a purely
nematic picture. In reality, too intensive an escape wo
result in a fast excitation of waves scattering the beam b
downstream over a short distance. This process can be
derstood within the framework of the quasilinear theory
the cyclotron instability developed for homogeneous plas
in Ref. @19# ~see also Ref.@13# and Sec. VII below!.

Consider the phase space of such a beam emanating
the shock upstream on the plane (v i ,v') in the shock frame
of reference~Fig. 1!, where (v i ,v') are parallel and perpen
dicular to the shock normal~and to the unperturbed magnet
field! components of the particle velocity. The arrangem
of the beam in the phase space corresponds qualitative
its parameters calculated later in this paper. As soon as
beam appears on the upstream side of the shock, it star
generate MHD waves that move to the left in the loc
plasma frame at the Alfve´n speed2CA but are in fact con-
tinuously convected back to the shock with the main flo
since u1@CA . Their resonance length is of the order
u1 /vci , wherevci is the ion cyclotron frequency. The bea
itself is scattered in a pitch angle by these self-genera
waves around the center atu12CA , so that it gradually dif-
fuses into thev i.0 region, which means that it return
downstream. The relaxation length of the beam, i.e.,

FIG. 1. Velocity space of particles just in front of the shock
the shock frame of reference. The ‘‘beam’’ particles schematica
represent the leakage from the thermal distribution downstre
After being scattered in a pitch angle first upstream and then do
stream, as shown by the arrows, these particles appear in fro
the shock again but at higher energies and overlapping with b
particles. They are shown as ‘‘beam 2.’’
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PRE 58 4913ION LEAKAGE FROM QUASIPARALLEL . . .
depth of its penetration upstream may be estimated al R
;u1 /g, whereg is the growth rate of the cyclotron instabi
ity upstream. Estimatingg from quasilinear equations~e.g.,
Ref. @19#! one may obtain, forl R ,

l R;
c

vpi

n0

nb

Dv i

u1
,

where vpi is the ion plasma frequency,nb and n0 are the
beam and the background densities, respectively, andDv i is
the beam width inv i . The last factor inl R is in fact only
slightly less than unity, so that the upstream part of the en
shock transition is roughlyn0 /nb@1 ion inertial lengths,
c/vpi .

In principle, the turbulence generated by the beam
growing in the downstream direction could gradually sa
rate at a distance* l R , and the plasma flow beyond th
distance could be declared as a downstream state. How
this is not what actually happens as both the observat
and numerical simulations of strong shocks reveal~see, e.g.,
Refs. @7,9#!. That is, there exists a relatively sharp sho
transition inside of this structure where the amplitude
magnetic pulsations increases over a distance;c/vpi , the
bulk flow slows down nearly to its downstream value, a
particle orbits spread in a velocity to an approximately th
mal width in a substantially increased magnetic field.

Existing one-dimensional~1D! and 2D hybrid simulations
~ions treated as particles and electrons as a fluid! of quasi-
parallel shocks@9,20–24# also provide some clue to how
particles are confined on the downstream side of the sh
That is, despite the fact that there are indeed many parti
just downstream of the shock front that have velocitiesv i

,0, only a few of them recross the shock. This suggests
the heated downstream plasma is directly locked by
waves which have been excited in the upstream region,
then transmitted across the shock. In part, they may be
erated at the shock interface. Because of a substantial do
stream increase of the wave amplitude due to the shock c
pression, the perpendicular component of theB field may
become large enough to trap the bulk of the particles an
sweep them downstream. An additional factor that can a
help to confine the shocked plasma is an electrostatic ba
that is also observed in simulations. The analysis of the ba
scattered ions performed by Quest@9# shows that the up-
stream flux of these particles is significantly smaller than
would be if all downstream particles with negative velociti
were to stream freely across the shock.

Another important conclusion that can be drawn from
1D hybrid simulations~see e.g., Ref.@9#! is that the down-
stream wave turbulence is dominated by a mode excited
the backstreaming beam in the upstream region. One
think of a circularly polarized quasimonochromatic MH
wave convected downstream with the bulk plasma and
tended there over a distance of the order of 100 ion ine
lengths. The amplitude of this wave is quite large,dB/B0
;(3 – 4) ~see also Ref.@23#!. Traces of the quasiregular pa
ticle motion in the wave are also seen in the simulations@9#.
Beyond this distance the wave is gradually damped, and
particle distribution tends to a thermal one. However, unl
the upstream partl R of the total shock transition, the distanc
where it happens is very difficult to assess analytically. T
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reason is that the level of turbulence is very high, and
weakly turbulent approach is probably impossible~see, how-
ever, Sec. III!. This part of the shock transition should rath
be regarded as a Bernstein, Green, and Kruskal~BGK! type
of wave@25#. Such an attempt is made in a companion pa
@26#, where we consider the slowing down and the heating
the upstream plasma caused by interaction with this w
downstream.

The present paper suggests a model of ion leakage al
ing the determination of the thermostat production rate t
was only parametrized in the injection theory@13#. The start-
ing point of the model is the particle dynamics in the Alfve´n
wave behind the shock@27#. The particle phase space is d
vided into two parts. One part contains the ‘‘trapped’’ pa
ticles which are convected downstream with the wave. T
second part contains ‘‘untrapped’’ particles, or particles
teracting adiabatically with the wave, and particles trapped
the nonlinear Doppler resonance. These particles can es
upstream when their averaged velocity with respect to
wave is high enough.

It is not assumed, however, that particle motion in th
model is purely regular. Instead, a downstream turbule
that should exist together with the monochromatic wave
lows particles to cross the boundary between trapped
untrapped regions and also between the ‘‘lock’’ and ‘‘e
cape’’ states of particles in the phase space. Although
motion across the invariant manifolds of the regular dyna
ics is assumed to be relatively slow, it should produce
necessary entropy by virtue of the standard argume
@28,29#: even a very weak perturbation can quickly rando
ize the particle motion while imposed onto the regular m
tion in the large amplitude wave, since the main job is do
by this wave via fast phase mixing. From this reasoning
obtain the fraction of the downstream particles that esc
upstream from such a trap as a function of their energy. T
allows us to calculate the unknown ‘‘thermostat’’ distrib
tion function in terms of the wave amplitude.

The final step of this scheme is the determination of
wave amplitude from the beam density. This provides,
fact, an equation for the wave amplitude, since the be
density depends on this as well. Upon solution of this eq
tion one obtains both the beam density and the wave am
tude as functions of shock parameters.

In Sec. II we briefly review the particle dynamics in
monochromatic circularly polarized wave, introduce suita
variables, and consider the special case of a very strong w
(dB/B0@1). In Sec. III the role of the background turbu
lence is discussed and adiabatically leaking particles
identified. In Sec. IV the probability of their escape is calc
lated as a function of energy and wave amplitude. In Sec
the resonant escape is considered. Section VI deals with
dependence of escape fluxes upon the mass to charge
In Sec. VII we calculate the wave amplitude upstream. T
enables us to obtain the particle flux without parametrizati
simply as a function of the Mach number. After a brief sum
mary of the considered leakage mechanism in Sec. VIII
Sec. IX we calculate the spectrum injected into the first or
Fermi acceleration, and compare it with the hybrid simu
tions. We conclude with a discussion of alternative mec
nisms and possible applications to the problem of ene
partition of collisionless shocks between thermal and n
thermal particles.
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II. PARTICLE DYNAMICS IN THE WAVE

The equations of motion in the case considered here
fully equivalent to the equations of particle motion in a wh
tler wave. These equations have been extensively studie
the past. It is well known@30# that they are completely inte
grable. However, unlike the situation with the whistler wa
where one usually assumesdB/B0!1, we must concentrate
on the opposite case as it was described in Sec. I. Here
therefore present a technically different description of
particle dynamics which is suitable to our purposes.

Let us assume that the wave propagates in thez direction,
i.e., normal to the shock andB05Bz5const. We represen
the total magnetic field in the reference frame moving w
the wave in the form

B5Bzez1B'~2excosk0z1eysin k0z!, ~4!

where $ei% denotes the standard basis in coordinate sp
andk0 is the wave number. The electric field vanishes in
wave frame of reference, and the equations of motion re

dv

dt
5

e

mpc
v3B, ~5!

dz

dt
5vz , ~6!

where the particle velocityv5vxex1vyey1vzez . Interested
in the case

«[
Bz

B'

!1, ~7!

we introduce the cyclotron frequency

v'5
eB'

mpc
, ~8!

and rescale the variables in Eqs.~5! and ~6! as follows:

k0z→z, v't→t,
k0v

v'

→v. ~9!

Using these new variables, Eq.~5! is rewritten as

dv

dt
5v3~2excosz1eysin z1«ez! ~10!

and Eq.~6! remains unchanged. It is convenient to make
further transformation in these equations (vx ,vy ,vz ,z)
→(l,q,vz ,z), in which

vx1 ivy52Al222«vzexp@ i ~q2z!#1exp~2 iz!.
~11!

It is easy to see thatl is conserved,dl/dt50, and we arrive
at the following one dimensional~i.e. integrable! dynamical
system in the variables (q,vz)

dq

dt
5vz1

« cosq

Al222«vz

2«,

~12!
re
-
in

e
e

e,
e
d

a

dvz

dt
52Al222«vzsin q.

The integrall2 can be written in the old variables as

l25vx
21vy

222vx cosz12vy sin z12«vz11.

Besidesl, there is another obvious integral, the energyv2

5vx
21vy

21vz
2 . Note thatl2 in Eq. ~12! can be negative in

certain parts of the phase space; positive definite is only
quantity l222«vz . However, being interested in the ca
«!1, we start our consideration of system~12! from the
simplest situation wherel2@u«vzu. As we will see, the es-
caping particles interact with the wave adiabatically (v.1)
in this case. We shall return to the case of small and nega
l2&« ~resonant escape! in Sec. V.

Adiabatic wave-particle interaction

Introducing the variable

h5vz1
«

l
cosq2«, ~13!

and retaining only the terms of zeroth and first orders in«,
system~12! describes a simple pendulum

dq

dt
5h,

dh

dt
52l sin q, ~14!

with the Hamiltonian

H52l sin2S q

2D1
1

2
h2, ~15!

that is connected with the integralsv andl by means of the
relationv252H1(l21)2. It is convenient to introduce the
standard action-angle variables in the system of equat
~14! and ~15!, using the truncated action

S5E h dq ~16!

as a generating function. The functionk252l/H54l/@v2

2(l21)2# divides the particle phase space into two pa
that will be superficially referred to as the region of trapp
(k.1) and untrapped (k,1) particles. It should be pointed
out that the particles withk.1 are not really trapped in the
usual sense because they can become untrapped (k,1)
without changing their energyv2. We shall return to this
point below. Here we only note that the analogy to, e.g.,
particle dynamics in a monochromatic Langmuir wave@31#
is incomplete in this respect. In many other respe
‘‘trapped’’ particles behave as such, in particular their av
aged velocityh̄ is zero. According to Eq.~13! this means
that v̄z;«.

For the untrapped particles, using Eqs.~15! and ~16!, we
obtain

S54
Al

k
ES q

2
,kD , ~17!
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where E is the incomplete elliptic integral of the secon
kind. It is convenient to define an actionJ as

J5
1

2p
sgn~h!E

0

2p

h dq, ~18!

so that we finally obtain

J5
4Al

pk
sgn~h!E~k!, ~19!

whereE denotes the complete elliptic integral of the seco
kind. Thus, the untrapped particles occupy the regionsuJu
>8Al/p[JS , and far from the separatrix (k51) wherek
→0 one simply hasJ→h. The angle variablec conjugate to
J is

c5
]S

]J
5p

FS q

2
,kD

K ~k!
, ~20!

where F and K are the incomplete and complete ellipt
integrals of the first kind. Note thatc→q ask→0. We will
not use the corresponding action-angle variables for trap
particles.

III. BACKGROUND TURBULENCE
AND ESCAPE UPSTREAM

The simple particle dynamics in a monochromatic wa
considered in Sec. II implies that the amplitude of this wa
is constant in space and time. This is certainly not the c
for the wave associated with a shock. As we mentioned
Sec. I the wave is extended over a finite distance on
downstream side of the shock~we assume betweenz50 and
z5L, and k0L@1! and decays at largerz. Thus particle
interaction with this wave occurs in the following way. Firs
particles that cross thez50 plane fromz,0 become trapped
~at least an appreciable part of them! and move downstream
Indeed, after crossingz50 they ‘‘feel’’ a strong quasiper-
pendicular wave field. The wave number can be estimate

k0.
u1

u2
ku , ~21!

whereku is the wave number of the most unstable and p
sumably strongest mode in the upstream region excited
the escaping beam due to the cyclotron resonancekv i1vci
50 ~we use here unnormalized variables!. As we shall see,
uv iu in this resonant condition may noticeably exceedu1 .
Here, we estimateku as ku&vHi /u1 . Thus, the gyroradius
of particles crossing the shock downstream is smaller t
the wavelength,

k0

u12u2

v'

&
u12u2

u2
«,1, ~22!

and these particles must be effectively deflected in the w
magnetic field. Since the wave is not really monochroma
and low amplitude turbulence is always present as well,
motion of particles is not fully deterministic. It should b
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noted here that the background turbulence can be very
generated by particles themselves. One generation sce
~the so-called sideband instability! has been studied fo
Langmuir waves in Ref.@32#, and for whistler waves in Ref
@33#. The results can be summarized briefly as follows. Af
the wave is switched on~or, what is more appropriate for ou
case, the plasma has entered the region of wave localizat!,
and the particles have bounced a few times in the wave fi
their distribution becomes ‘‘ergodic’’ and depends only
the actionJ. This happens due to the fast mixing in the pha
variablec. This ergodic distribution is, however, usually un
stable with respect to the excitation of satellites of the m
wave due to the resonancesvk5nV(J). Here vk and k
'k0 are the frequency and the wave number of a satellite
the main wave frame,V(J)5]H/]J is the frequency of par-
ticle oscillations in the wave, andn is an integral number.

A quasilinear theory of the backreaction of excited sat
lite turbulence on the main wave and on the ergodic part
distribution has been developed by this author@34#. This
theory shows that the satellites change both significantly
particle distribution and the wave. However, they evol
relatively slowly compared with the particle periodV21. In
particular, the untrapped particles can diffuse inJ variable
and cross the separatrixk51 becoming trapped, and vic
versa. This diffusion may cover the phase space globally
contrast to stochastic layers around separatrices that us
develop in the case of quasi-monochromatic perturbati
@35#. Coming back to the subject of this paper, one can
pect a similar process that results in particle exchange
tween the trapped and untrapped regions, as shown sche
cally in Fig. 2.

In a general sense the origin of the background turbule
is not important in our simplified model. It is quite clear th
there are many factors in the shock neighborhood that
drive such a turbulence and, hence, destroy the invariant
the particle motion. Our critical assumption is, however, th
the particle diffusion in theJ variable associated with thi
turbulence is slow compared with the regular motio
D(J)/V(J)!JS

2 , whereD is the quasilinear diffusion coef
ficient. On the other hand we also assume that the ba
ground turbulence provides sufficient mixing of particles
the region 0,z,L, i.e., Dk0L/V@JS

2 , so that we finally
impose the following constraint on the diffusion coefficien

1

k0L
!

D

VJS
2 !1. ~23!

FIG. 2. Phase space of particles moving in the wave behin
shock. The shaded region corresponds to the adiabatically esca
particles.
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Under these circumstances the escape flux upstream bec
virtually independent ofD, i.e., of the downstream back
ground turbulence. To explain the point consider the ph
space in Fig. 2 again. As seen in the wave frame the sh
front z5zs is escaping to the left at the speedu05u22CA
'u2 , whereCA is the phase velocity of the wave propaga
ing backwards in the local fluid frame as one excited by
backstreaming particles in the upstream region and trans
ted then downstream@36#. Therefore, the particles above th
upper branch of the separatrixS1 (k51) cannot penetrate
upstream. At least some particles belowS2 can in principle
cross the planez50. To identify them we first consider
particle havingk(J),1 belowS2. Its velocityvz oscillates
in time, and depending on the invariantsJ andv the absolute
value of particle velocity can exceed at least instantaneo
the valueu0 and, therefore, such a particle can potentia
take over the shock front. For this to happen it must re
z50, and since the diffusion inJ is slow, it must come from
a far downstream region. Therefore, it should exceed
velocity u0 not only instantaneously but also on avera
~over V21! to be able to reach the shock front and then
cross it. These particles are shown as the dotted area in
2. Therefore, the area between the separatrixS2 and the
dotted area~where v̄z,2u0! should be virtually empty in
the vicinity of the shockz501, since the shock is effec
tively escaping from these particles and refilling this area
the trapped particles~aboveS2! and escaping~belowSe! due
to the diffusion acrossS2 and Se is slow due to inequality
~23!. The same arguments can be applied to the trapped
ticles which havev̄z;«.2u0 and, therefore, cannot reac
the shock. An exception should probably be made for so
particles in the leftmost trapped region. Their return u
stream may occur whenS2 crosses the linevz52u0 ~not
shown in Fig. 2! provided that they have a proper phase
the wave while crossing the shock. However, this would b
reflection off the shock front rather than the leakage from
downstream region considered here. We shall not take
possibility further into account here~see Ref.@37# for a re-
flection dominated injection scenario!. For the above reason
we can identify the particles escaping upstream with th
below Se in Fig. 2. If the amplitude of the background tu
bulence satisfies condition~23!, the flux of the escaping par
ticles can be obtained from the ergodic arguments regard
of any details of their interaction with the background turb
lence. One may think of a quasilinear plateau that also d
not depend on the form of the wave spectrum as of a sim
analog to this situation. For the particles on the curveSe , we
have

v̄z[
1

2p E
0

2p

vzdc52u0 . ~24!

Using Eq.~13! and the action-angle formalism introduced
Sec. II one easily finds

v̄z52
pAl

kK ~k!
2«F1

l
2112

E~k!2K ~k!

k2lK ~k! G . ~25!
es

e
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e
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Equations~24! and ~25! define a criticalk5k* (u0), so that
particles withk,k* ~dotted area in Fig. 2! escape upstream
whereas the rest are convected downstream.

IV. INVARIANT MEASURE OF ADIABATICALLY
ESCAPING PARTICLES

In Sec. III we defined a boundary in particle phase sp
that divides the shocked downstream plasma into two pa
escaping upstream and convecting downstream. In a f
dimensional phase space (v,z) this boundary is a hypersur
face given by the equation@see Eqs.~24! and ~25!#

v̄z~J,l!52u0 . ~26!

The unperturbed motion takes place on a 2-torus labeled
the two arbitrarily chosen independent integrals of motio
which are equivalent to two action variables. Reducing
motion to an effectively one-dimensional one, we have u
the actionJ as an action of the one-dimensional motion, a
the integrall accounted for the motion in cyclic variable
These invariants were useful for the task of Secs. II and
However, our final goal is to calculate the escaping flux sta
ing from the Rankine-Hugoniot relations, i.e. from the p
rameters of the upstream flow, which unfortunately yie
only the width of the downstream distribution inv, not its
form, whereas the pitch angle distribution is implied to
isotropic. We thus need to transform the results of Sec. II
the variablesv andm, wherem is the cosine of a pitch angle
in the wave frame. A reasonable starting assumption ab
the particle distribution is that, far downstream, where
thermalization of the plasma~also due to the interaction with
the Alfvén wave! is completed, the distribution becomes is
tropic in pitch angle and, for example, a Maxwellian inv.

As argued in Sec. III, the background turbulence will ge
erally destroy the 2-tori and give rise to a relatively slo
diffusion in l and J. If we assume, in addition, that thi
turbulence is mainly due to the weakly dispersive Alfv´n
waves or magnetosonic waves propagating almost~anti!par-
allel to the unperturbed magnetic field and all in the sa
direction, then this diffusion is essentially a diffusion in pitc
angle. In other wordsv remains invariant, and the secon
order Fermi acceleration is not important.

Our next assumption concerns mixing properties of
particle dynamics influenced by the background turbulen
In particular, we assume that the relevant phase flux is
godic, and that the typical length scaleLm of the pitch angle
scattering satisfies the condition 1/k0!Lm!L @see Eq.~23!#.
The ergodicity implies that when a particle wanders in t
regionzP(0,L), the time spent by it in the ‘‘escape’’ posi
tion is proportional to the size of the ‘‘escape’’ region.

Thus, to calculate the fraction of the backstreaming p
ticles that can cross the shock as a function ofv, we need to
calculate the fraction of the hypersurfacev5const down-
stream from the shock occupied by the escaping partic
According to Sec. III, this fraction can be represented as
invariant measure of these particles on the isoenergetic
face in the phase space as follows:

nesc5
1

8p2 E
G
d~v82v !dv8dm df dz. ~27!
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Here we have introduced the spherical coordinates in
velocity space:

vz5vm,

vx5vA12m2cosf, ~28!

vy5vA12m2sin f.

The integration regionG contains one wave period inz, i.e.,
2p, and is confined in the other three variables by the hyp
surfacek5k* (l,u0)5const to be obtained from Eqs.~24!
and~25!. According to the normalization used in Eq.~27! the
full measuren(v)51, and Eq.~27! thus yields the fraction of
particles escaping from the surfacev5const. The boundary
k* of the regionG is not a coordinate surface in the variabl
used in Eq.~27!, over which the far downstream distributio
is assumed to be uniform as discussed earlier in this sec
To evaluate the integral~27!, we therefore transform it to the
variables already introduced in Sec. II as follow
(v,m,f,z)→(l,q,h,z), with

l5Av2~12m2!22vA12m2cosa1112«vm,

q5arctanS vA12m2sin a

vA12m2cosa21
D , ~29!

h5vm2«v
v~12m2!2A12m2cosa

11v2~12m2!22A12m2cosa
,

and a5f1z. The absolute value of the Jacobian of th
transformation can be conveniently expressed after som
gebra through the invariants of the unperturbed motionv and
l:

U ]~l,h,q!

]~v,m,f!
U5 v2

l
1O~«2!. ~30!

Thus the invariant measure~27! rewrites as

nesc5
1

4v2p E
G
d@v8~l,h,q!2v#l dl dh dq, ~31!

wherev82(l,h,q)52H1(l21)2, andH is defined by Eq.
~15!. The next transformation which we perform is a cano
cal one, also introduced in Sec. II, i.e., (h,q)→(J,c). Then
we obtain

nesc5
1

2v2 E
G
d~v82v !l dl dJ. ~32!

Transforming this integral to thek variable introduced in
Sec. II, after some simple algebra we finally obtain

nesc5
2&

pv
E

0

k
*
S 1

2
k2211A1

4
k4v22k211D 3/2

k3A1

4
k4v22k211

K ~k!dk.

~33!
e

r-

n.

:

al-

-

An escape of these particles is possible only forv.1, and
the escape probability behaves asnesc;k

*
4 (v21)3/2 for v

21!1, where k* is also rather small numerically forv
,v th a , wherev th a may be characterized as a threshold v
locity of the adiabatic escape and can be estimated from E
~24! and ~25! asv th a'11«. For largerv, k* rises sharply
to reachk* .1. For v→`, nesc'

1
2 (12v21). The former

formula for nesc reflects the shrinkage of the phase space
adiabatically escaping particles asv→11, and does not
mean that there are no other escaping particles withv&1
~see Sec. V!. The interpretation of the last formula i
straightforward: these particles are not influenced by
wave, and nearly half of them escape.

To obtain the distribution of escaping particles one has
multiply nesc by the thermal downstream distribution. To b
specific we assume that the latter is a Maxwellian with
downstream thermal velocityv2 . Then, using our dimen-
sionless velocity in the wave framev which is virtually the
downstream velocity (CA!u2) the pitch angle averaged dis
tribution of escaping particles can be written as

Fesc~v !5
2

12u0 /v
nesc~v ! f M~v !, v.1, ~34!

whereas

f M5
n2

~2p!3/2v2
3 expS 2

v2

2v2
2D , ~35!

with v25«k0VT /vci , and VT5AT2 /M is the downstream
thermal velocity. The factor (12u0 /v)/2 accounts for the
limited fraction of the phase space at givenv in which par-
ticles escape into the upstream half-space. According to E
~21! and ~22!, we can estimatev2 as

v2&«
VT

u2
')«, ~36!

where the last value is valid for a strong shock with a co
pression ratio of 4. Sincenescstarts to grow from zero only a
v.1, we infer that the contribution of the particles interac
ing with the wave adiabatically is exponentially small.

V. RESONANT ESCAPE

Let us turn now to the resonant particles, that cannot
described by the simple formalism developed in Sec.
sincel2 can be very small or even negative in this case. I
convenient to use the variables (v,m,a) again@see Eq.~28!#,
wherea5f1z, and a Hamiltonian

H5A12m2cosa1 1
2 vm22«m, ~37!

which is related tol2 throughH5(v2112l2)/2v. The ex-
act equations then take the forms

dm

dt
5A12m2sin a52

]H
]a

,
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da

dt
52

m cosa

A12m2
1vm2«5

]H
]m

. ~38!

The particle trajectories are shown in Fig. 3 as a contour
of the functionl2 with fixed v. Next we concentrate on th
region of small and negativel2. First, consider the vicinity
d

io
th
p-
th
w

es

pe

on

IV
le

v

ot

of the elliptic point of the Hamiltonian~37! a50 ~mod 2p!,
m5m0 . The equation form0 reads

2
m

A12m2
1vm5«, ~39!

and in the case of small«!1 andum0u!1, the last equation
reduces to a cubic one which yields, form0 ,
m055
22uju1/2sinhF1

3
sinh21

«

uju3/2G , j<0

22j1/2coshF1

3
cosh21

«

j3/2G , 0,j,«2/3

2j1/2sinF1

3
sin21

«

j3/22
2p

3 G , j.«2/3,

~40!
or-

re

-

rm

es
r-
wherej5 2
3 (v21). The bottom expression is strictly vali

whenj!1, otherwise a more accurate treatment of Eq.~39!
is needed. At the same time, for largerj the main contribu-
tion to the particle escape comes from the adiabatic reg
which was already considered in Sec. IV. Moreover,
downstream thermal particle distribution falls off very ra
idly in v, and the behavior of the escape probability at
lower energies is generally more important. Therefore,
start our consideration from the casev,1. A particle that
moves at the critical pointa50, m5m0 can escape only
when

m0v,2u0 ~41!

@see Eq.~26!#. Since um0u is always small forj,0 @m0
.2(2«)1/3 for uju,«2/3, andm0.2«/3j for uju.«2/3#, the
last inequality cannot be fulfilled for all resonant particl
with v,1, and therefore a threshold velocityv th occurs. As
it was argued in Sec. III, the dimensionless velocityu0 can
be estimated as

u0.
k0u2

v'

.«, ~42!

whereu2 is the bulk velocity in the downstream region@see
also Eq.~21!#. In practiceu0 can deviate from value~42! due
to a number of reasons, e.g., due to a finite propagation s
of the wave and/or due to the fact thatk0 depends onv th .
Therefore, we representu0 as u05«z, wherez.1. Then,
using Eq.~39!, inequality~41! rewrites as

v.v th[zA~z11!221«2. 1
2 1«2. ~43!

To obtain the number of particles that are trapped into n
linear resonance around the pointa50, m5m0 and escape
upstream, we can use the same arguments as in Sec.
our calculation of the escape flux of the untrapped partic
Thus, givenv.v th we calculate the critical orbit arounda
50, m5m0 for which the averaged velocityv̄z[vm̄
52u0 . Due to the anharmonicity of the oscillations the a
n
e

e
e

ed

-

in
s.

-

eraged velocityv̄z that starts from the valuev̄z5vm0 at the
bottom of potential well increases with the radius of the
bit, finally reaching2u0 . Near the threshold wherev2v th

!1, the conditionv̄z52u0 is fulfilled for an orbit which is
close to the critical point of the Hamiltonian. It is therefo
convenient to introduce a variablen5m2m0 and expand the
Hamiltonian~37! at a5n50, retaining only cubic anharmo
nicity in unu!1, and neglectinga4 and a2nm0 compared
with a2!1. Thus, the truncated Hamiltonian takes the fo

H152
a2

2
1

3

4
~j2m0

2!n22
m0

2
n3. ~44!

We again introduce the action-angle variabl
(n,a)°(c,J), consideringa as a momentum. The transfo
mation is generated byS5*a dn. Thus, forc,J, we obtain

J5 R a dn, c5
]S

]a
, ~45!

where

a5A2m0~n32a2n21a0!,

FIG. 3. Contour plot ofl2 for v50.9 and«50.2.
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a25
3

2 S j

m0
2m0D , ~46!

anda0 plays the role of the ‘‘energy’’ constant of the anha
monic oscillator~44!. It is worthwhile to perform the trans
formation

n5 1
3 a2~2z11!, ~47!

and to rewritea in Eq. ~45! as follows:

a5S 2

3
a2D 3/2

A2m0~z2z21!~z02z!~z12z!, ~48!

where

zn5sinS 1

3
sin21 a1

2pn

3 D . ~49!

Herea again denotes the ‘‘energy’’ of the oscillator~44! and
varies between21 and 1 in the potential well. Substitutin
Eqs. ~47! and ~48! into Eq. ~45!, after some simple algebr
we obtain

J533/2
~m0

22j!5/2

5&pm0
2

2~k821k4!E~k!2k82~11k82!K ~k!

~k821k4!5/4 ,

~50!

wherek25(z02z21)/(z12z21) and k82[12k2. As men-
tioned, there exists a criticalJ5Je , such that the particles
with J,Je escape, whereas the particles withJ>Je do not.
To calculateJe we introduce the averagedm̄ as

m̄~J!5
1

2p E
0

2p

dc m~J,c! . ~51!

ThenJe will be defined by

m̄~Je!v52u0[2z«. ~52!

The last equation can be rewritten as

v~ n̄1m0!52«z, ~53!

wheren̄5(1/T)rn dn/a(n), a~n! is given by Eq.~46!, and
T5rdn/a. After a short calculation we obtain

n̄5
a2

Ak821k4 F1

3
~22k21Ak821k4!2

E~k!

K ~k!G . ~54!

Inserting the last expression into Eq.~53!, we first obtaink*
as a root of the equation

v@ n̄~k* !1m0#52«z, ~55!

and, then using Eq.~50!, we finally obtainJe5J(k* ).
Normalizing the full measure of the particles atv

5const to unity,

V05
1

4p E
21

1

dmE
2p

p

da51, ~56!
and adopting arguments similar to those already used in
IV, we find, for the invariant measure of the resonantly e
caping particles,

Vesc5
1

4p E
J,Je

da dm . ~57!

Transformingda dm→dc dJ we thus find

Vesc5
1
2 Je5 1

2 J~k* ! . ~58!

Not far from the threshold velocity (v*v th), wherek* is
small, from Eq.~55! we obtain

3

16
a2k

*
4 '2m02

«z

v
. ~59!

Since

J~k!'
35/2

29/2

~m0
22j!5/2

m0
2 k4,

for Vesc we have

Vesc'
&

6
@3m0

222~v21!#3/2S 11
«z

vm0
D , ~60!

which in the case, 12v.«2/3, simplifies to

Vesc'
2

3v
~11z!~12v !3/2~v2v th!. ~61!

As v grows approaching unity, Eq.~59! becomes invalid,
and in the case opposite to Eq.~59!, i.e., whenk8!1 from
Eq. ~55!, we find

k
*
2 '1216 expH 23v

2~v21!23m0
2

2~v21!v13«m0z J ~62!

'1216 exp$23321/3«22/3/z%. ~63!

Note, that the last expression is valid only foru12vu,«4/3.
The escape probability then takes the form@Eqs. ~50! and
~58!#

Vesc5
33/2

5&p

~m0
22j2!5/2

m0
2 . ~64!

The dependenceVesc(v) as calculated for smallk and for
k.1 is shown in Fig. 4. Since the downstream thermal d
tribution falls off very rapidly, the resulting escape spectru
will have a maximum inv close to the pointv5v th'

1
2 . The

distribution of the escaping particles can again be written

Fesc5
2

12u0 /v
Vescf M~v ! . ~65!

For larger v*1, when the approximationum0u!1 breaks
down, formula ~64! becomes invalid as well, and a mor
accurate consideration of Eqs.~38! is needed in this case. A
the same timeVesc;« for v.1, as may be seen from Eq
~64!, and the escape in the regionv21*1 is dominated by
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particles that interact with the wave adiabatically. Thus,
v*1, the distribution of escaping particles can be given
Eq. ~34!. It should be borne in mind, however, that the ma
mum of the escape distribution is rather close tov5 1

2 for
small «, so that formulas~61! and ~64! provide virtually the
kernel of the distribution of escaping particles, whereas E
~33! and ~34! describe the tail of this distribution.

VI. INJECTION EFFICIENCY VERSUS MASS TO CHARGE
RATIO

One important aspect of any injection mechanism sho
be its dependence upon the mass to charge ratio of diffe
species. This is obviously so in the mechanism suggeste
this paper. Indeed, in the case«!1, the leakage upstream
must be controlled by the parameterk0ra , where ra
5(VTa /v')(A/Z), is the Larmor radius of a speciesa, i.e.,
VTa is a corresponding thermal velocity, andA andZ are the
mass and charge numbers, respectively. It is clear
strongly magnetized particles (k0ra!1) cannot be injected
whereas unmagnetized particles~k0ra@1) are injected as
readily as in the case without magnetic field. For protons
parameter isk0rp[v2*« almost by definition, simply due
to the fact that both the wave and the thermal distribut
downstream originate from the same upstream flow@see Eq.
~36!#. To confine particles effectively the parameter« must
be rather small but not too small—otherwise the upstre
turbulence cannot be excited by a weak proton beam. T
means that protons are close to a watershed between
species that cannot be injected by this mechanism~these are
apparently electrons only!, and particles with higherA/Z
whose injection efficiency increases.

According to Sec. V, the most important physical quant
that regulates the escape flux is the threshold velocityv th
which is the same for all species, Eq.~43!, provided that in
the definition of the normalized velocityv, Eq. ~9!, one sub-
stitutesv'a5v'(Z/A) instead ofv' . Thus, the subjects fo
injection are only the particles withv.v th.

1
2 , or

FIG. 4. Escape probability«50.2 ~upper panel! and «50.3
~lower panel!. Solid lines correspond to Eq.~60!, whereas dashed
lines correspond to Eq.~58!, with k* from Eq. ~62!.
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(k0v/v')(A/Z). 1
2 for unnormalizedv. The escape prob

abilitiesnesc(v) andVesc(v) ~Secs. IV and V! as functions of
dimensionless velocity are also the same for all sorts of p
ticles. The quantity that discriminates particles againstA/Z
ratio in dimensionless variables is obviously the downstre
thermal velocityv2 @Eq. ~36!#. For a speciesa, we thus have

v2a5v2

VTa

VT

A

Z
. ~66!

We may now use Eqs.~34! and ~65! for calculating the dis-
tribution of escaping particles of a sorta upon substituting
v2a instead ofv2 . It is of course assumed that all the arg
ments of Sec. III are valid for these particles as well. Th
exists, however, the problem of the thermal velocitiesVTa .
It is indeed very difficult to quantify them at the current lev
of description. The simplest assumption is that upon cross
the shock these particles behave more or less like the
tons. In other words, their excess~over u2! velocity, i.e.,
u12u2 , is spread aroundu2 and we assume thatVTa.VT .
For the purpose of simplicity and for extracting the depe
dence uponA/Z we also assume that the thermal distrib
tions of all speciesa is equivalent to that of the protons

f a5
n2a

~2p!3/2v2a
3 expS 2

v2

2v2a
2 D . ~67!

Then we may calculate the density@38# of injected particles

ninj
a 5E

vz,2u0

2dv

12u0 /v
f aV̄esc, ~68!

whereV̄esc5Vescfor v,1 andV̄esc5nescfor v.1 @see Eqs.
~34! and ~65!#. The last equation can be evaluated to

ninj
a 5A2

p

n2a

v2a
3 E

v̂

`

v2dvV̄esc~v !expS 2
v2

2v2a
2 D , ~69!

where v̂5max$vth ,u0a% u0a[u0A/Z. According to Eqs.

~60! and ~64! and Fig. 4, the functionV̄esc(v) rises sharply
from V̄esc(v th)50 to become approximately constant,

V̄esc.V0[
3A6

5p
«,

in the regionv th1s«&v&1, where s535/2/10p. For v
.1 the escape flux is dominated by adiabatic particles.

simplify the algebra we substituteV̄esc.V0 into Eq. ~69!,
and shift the lower limitv th→v th* 5v th1ŝ« whereŝ;s and
extend the integral tò . Starting fromv51 we may use the
high energy asymptotic resultnesc5(121/v)/2, multiplied
by 122V0 , to compensate for the above extension of t
contribution of resonant particles. This simple interpolati
yields for the protons,h[ninj

p /n2p
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h5
1

2
2S 1

2
2V0DFS 1

&v2
D 2V0FS v th*

&v2
D

1A2

p

V0

v2
v th* expS 2

v th*
2

2v2
2D , ~70!

where

F~x!5
2

Ap
E

0

x

e2t2dt.

For other species one may obtain a similar formula from
~69!. We illustrate it by plotting the injection efficiencyha
normalized to the proton efficiency. This is shown in Fig
for v2a5v2A/Z and ŝ51.5s.

VII. A SIMPLIFIED SELF-CONSISTENT MODEL

So far, we have considered particle escape under a
scribed wave spectrum downstream. However, as we em
sized, this escape mechanism ought to possess a very di
self-regulation. Indeed, there is a strong negative feedb
between the wave intensity and the density of the esca
beam—if the beam is weak and excites thus only we
waves, the leakage will be increased to produce stron
waves. Similar arguments lead to decreasing the leakag
the beam is too strong. Therefore, both the beam inten
and the turbulence amplitude must rest at some definite
unique level. What makes this situation differ from the sta
dard quasilinear theory of beam relaxation in homogene
plasmas is that ‘‘beam relaxation’’ here means actually
return to the shock front via the cyclotron interaction w
the self-excited MHD waves~see Ref.@13# for a detailed
description of this process!. Hence, a plateau does not for
in fact and the relaxation lengthl R means simply a distanc
at which the majority of beam particles are turned arou
and swept back to the shock. The nonlinear wave phenom
are assumed to be unimportant, which implies that the c
responding time scaletNL. l R /u1 . Thus, the fraction of the
beam energy that may in principle be channeled into
plasma heating through the nonlinear wave-particle inte
tions is correspondingly small, and the wave energy at

FIG. 5. Injection efficiencies of different species normalized
proton efficiency as functions of mass to charge ratio and for
ferent wave amplitudes.
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shock front may be calculated from a simple energetic b
ance.

First we note that the beam energy ismnbvb
2/2, where

uvbu*u1 is the beam velocity in the upstream frame, andnb
is its density. Since it scatters back quasielastically, aro
scattering centers that move at the low velocity2CA , only a
CA /vb!1 fraction of beam energy may be converted in
waves. A complete quasilinear theory of cyclotron beam
laxation in homogeneous plasmas has been developed in
@19#. One can show that the expression for the wave ene
released by an unstable beam as calculated by these au
is also applicable for the case considered here. Thus for m
netic field perturbation upstream we may write

B'u
2

8p
.

L

4
nbmpCAvb . ~71!

We have merely introduced an additional factorL
;Dv i /vb,1, whereDv i is the beam width in parallel ve
locity. This factor appears because the beam relaxation
curs under the constraint of conservation of the~zero! par-
ticle flux *v i f bdv i on a given diffusion line v'

2

1(v i1CA)25const in velocity space rather than under t
conservation of the phase density* f bdv i along this line. The
reason for such a factorL may be understood from the ob
servation that particles starting to escape at veloci
;2Dv i , while being turned around can hardly acquire po
tive velocities that are appreciably larger than1Dv i before
returning to the shock. Again, because the above mentio
particle flux must be zero. Since the downstream fieldB'

5rB'u , wherer 5u1 /u2 is the shock compression ratio w
may rewrite Eq.~71! as follows:

1

«2 .
1

2
r 3LMAh, ~72!

where MA.vb /CA , and h5nb /n2 is given by Eq.~70!.
Sinceh~«! is a monotonically increasing function, Eq.~72!
determines a unique value of« and thus a unique injection
rateh.

Consider first the caseMA@1. To the leading approxima
tion in «!1 and substitutingv25)«, r 54 into Eq. ~70!,
we obtain

h5
6

5p3/2v th* expS 2
v th*

2

6«2D . ~73!

Equation~72! then rewrites

1

«2 5CMAexpS 2
v th*

2

6«2D , ~74!

where

C5
192

5p3/2v th* L.

For CMA@1, and assumingC;1, we thus obtain

«2.v th*
2/6LA , ~75!

where

f-
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LA5 lnS MA

v th*
2

6 ln MA
D .

For the injection rateh we have

h5
3LA

16LMAv th*
2 . ~76!

Here one may putv th* . 1
2 . It is seen that the injection rat

formally vanishes with 1/MA as h;MA
21 ln MA . However,

already for«&1/4, B'u;Bz , and the estimate of the wav
amplitude might need some correction. Clearly, the abovh
scaling is not applicable in the limitBz→0 in which h van-
ishes. For such a weak magnetic fields different mechani
of beam relaxation must be considered.

For moderate values of«,1, Eq.~72! can in principle be
easily solved numerically withh~«! given by Eq.~70!. We
know already that the above formulas are applicable
rather small values of«&0.2. On the other hand,« cannot be
too large in any case, in fact it cannot be larger than ab
0.4 to satisfy Eq.~72!. Thus, what is actually needed is
reasonable but simple approximation ofh~«! in Eq. ~72! in
the interval 0.2&«&0.4 to resolve Eq.~72! for «. It is con-
venient to use the approximation

h5
c1

12c2«1c3«2 , ~77!

which is shown in Fig. 6 forc150.0105,c254.91, andc3
56.58. Denotingq532LMAc1 , we obtain the following so-
lution for « as a function ofq:

«5
c2

2~c32q! F12A12
4

c2
2 ~c32q!G . ~78!

This is shown in Fig. 7 together withh(q). One sees that the
injection rate depends rather slowly onMA , as in the case o
higherMA ~smaller«! considered earlier.

VIII. LEAKAGE PROCESS IN A NUTSHELL

The mechanism of ion leakage considered in the previ
sections unfortunately requires more calculations than se
to be appropriate to its physical simplicity. At a phenomen
logical level this mechanism is almost as simple as the

FIG. 6. The actual injection rate calculated from Eq.~70! ~solid
curve!; the approximations are given by Eqs.~73! ~dotted curve!
and ~77! ~dashed curve!.
s

r

ut

s
ms
-
s-

cape from an oblique shock, where for a particle to catch
shock it must move at the speedu2 /cosQnB2

.u2 /« along the

field line. HereQnB2
is the angle between the downstrea

magnetic field and the shock normal!. Such an escape wa
extensively studied in Ref.@39#. Even if the shock is quasi
parallel but the magnetic field is locally oblique to the sho
normal most of the time, the same kinematic escape co
tion holds for magnetized particles. As we have seen in S
VI, most of the protons must be magnetized, and in the c
of the turbulence dominated by a circularly polarized Alfv´n
wave the lowest energy particles that can escape have a
locity v5v th.1/2 ~v th.u2/2« in unnormalized variables!.
According to the phase plane shown in Fig. 3 these are
particles that move towards the shock being close to
point wherea5f1z50; m5m0,0. Therefore, they fall
into the cyclotron resonance with the wave~f1z50, f
52z52m0vt, but they spiral as electrons in the unpe
turbed fieldBz , trying to follow the magnetic field line and
to minimize thus the Lorenz force, the only force in o
model that can prevent their escape. The inclination of th
orbit to thez axis is, however, about a half of that of th
magnetic field: v' /vz[Avx

21vy
2/vz.(12v)/«.1/2«

whereasB' /Bz[1/«.
As we have seen in Sec. VI, in the case of very sm

values of« these particles make the bulk of the leakag
Since they are concentrated in a relatively small region of
downstream phase space, this allows us to forecast their
ergy and angular distribution, just as they appear upstre
First, their energy per mass in the downstream frame mus
somewhat aboveE5v th

2 /2, wherev th.
1
2 in the dimension-

less variables. Furthermore, sincev' /vz.1/2«@1 the en-
ergy of leaking particles is predominantly in the perpendic
lar motion. In the unnormalized variables we thus have

E.E'*
m

2

v'
2

k0
2 v th

2 .
mu1

2

2

v th
2

«2r 2 , ~79!

whereas the parallel energy may be estimated asE i

.4«2E' . It should be noted that the pitch angle scatteri
upstream may change this relation to a certain extent. On
other hand it is in a reasonable agreement with the result
the strong shock simulation@9,23#.

FIG. 7. The parameter« ~solid curve! and injection rateh
~dashed curve! as functions ofq532LMAc1 .
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IX. INJECTION EFFICIENCY. COMPARISON
WITH HYBRID SIMULATIONS

As we emphasized in Sec. I the calculation of the flux
leaking particles alone does not solve the problem of inj
tion. The main result of injection theory should be the hi
energy asymptotics of a spectrum that emerges in a ste
state when the leaking particles repeatedly cross the sh
and achieve energies sufficient for describing them by
means of the standard theory of diffusive shock accelera
~see, e.g., Ref.@15#!. The mathematical formalism of injec
tion theory was developed in Ref.@13#. Now we may apply it
to the distribution of leaking particles~thermostat distribu-
tion! calculated in the present paper. We also have to bea
mind that particles that cross the shock more than o
~higher generation of injected particles, beam 2, etc.; see
1! are still subject to the filtering on their way back upstrea
due to the interaction with the downstream trailing wave.
we have seen, this interaction weakens with the energy
the thermostat becomes transparent to particles withv
@v' /k0 ~unmagnetized particles!. With this in mind, the
whole algorithm may be outlined as follows.

Suppose that some fraction of the downstream plas
leaks upstream to form atz50 the one-sided distribution
F(v), v i5vz8,0 ~see Fig. 1!. Herev8 is the velocity in the
shock frame, and we keep our notationv for the wave frame
in the downstream medium~almost the downstream frame!.
Due to pitch angle scattering in the upstream medium th
particles turn around and eventually cross the shock in
downstream direction forming the distributionF1(v), vz8
.0 which can be written asF15L1F, again atz50. The
linear operatorL1 , the upstream propagator, can be obtain
from the solution of the kinetic equation@13#. According to
the thermostat model in use~Secs. I and III!, these particles
penetrate further downstream through the thermostat, mix
up with the hot downstream plasma. At the same time t
are pitch angle scattered on the background turbulence
that some of them acquire negative velocities and move b
to the shock. We denote their distribution within the therm
stat byF2. For F2 we thus have

F25L2L1F1 f M . ~80!

HereL2 is the downstream propagator, andf M is the distri-
bution function of the downstream thermal plasma t
emerges upon the first crossing of the shock interface~with-
out higher generations!. In Secs. IV and V we assumed fo
simplicity that f M is a Maxwellian distribution so tha
L2f M' f M , because it is isotropic in the wave frame. No
the calculation of the injection spectrum that appears
upstream of the shock is nothing more than the calculatio
the spectrum of leaking particles already made in Secs
and V, with f M in Eq. ~65! replaced byF2 from Eq. ~80!.
Thus, the distribution of injected particles forF takes the
form

F5tL2L1F1t f M . ~81!

Here the functiont(v) is given by@see Eq.~65!#

t~v !5
2

12u0 /v
nesc, ~82!
f
-
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and may be interpreted as a thermostat transparency co
cient. According to Sec. IV,t→1 asv→`. If there were no
scattering upstream (L150), Eq. ~81! would be equivalent
to Eq. ~65! that yields the distribution of escaping particle
given the thermal distribution downstream,f M . In general,
Eq. ~81! is an integral equation forF. The kernelL2L1 was
calculated in Ref.@13#, where the solutions of this equatio
were also studied fort[1 and various functionsf M which
should have mimicked the effect of thermostat filteringt
,1).

Expression~82! implies only an adiabatic leakage whic
is appropriate for particles withv.1 ~Sec. IV!. If the reso-
nant particles leak as well, the escape probabilityVesc from
Eq. ~65! should be added tonesc in Eq. ~82!, and it will
dominate in the regionv&1. However, unlike the leakage o
adiabatically interacting particles, the leakage of the reson
particles is very sensitive to the wave polarization. This m
be understood from inspection of Fig. 3 drawn for anA
wave. The magnetosonic~MS! wave case can be obtained b
flipping the phase portrait in Fig. 3 since the MS polarizati
corresponds toe,0, and the Hamiltonian~37! is invariant to
the transformatione→2e, m→2m. Thus, the candidate
for the resonant leakage from an MS wave would be
particles marked by 2 and 3 and these alike, i.e., those
culating around a fixed point ata52p ~mod 2p!, m.0 in
Fig. 3. However, they have relatively low values ofm̄, and
rough estimates show that they cannot escape. At the s
time, according to our discussion of the leakage from
thermostat in Sec. III such particles can potentially esc
from the region immediately behind the shock front, pr
vided that the wave field is sufficiently perturbed. This po
should be borne in mind when we compare our results w
hybrid simulations below.

Most of the hybrid simulations are essentially time depe
dent, since the shock runs through a finite spatial dom
Equation~81! implies a steady state, and for this rather p
liminary comparison we select only a hybrid simulation@23#
where the simulation box was anchored on the shock fr
and a quasistationary spectrum was developed. A more t
ough comparison with other numerical results will be do
elsewhere. As we have seen, the most important param
that determine the distribution of leaking particles are
amplitude, the wave number, and the polarization of the tr
ing wave. The injection spectrum is then formed depend
primarily on the shock compression, and to some extent
the spectrum of the background turbulence upstream
downstream that enters the propagatorsL1 andL2 in Eq. ~81!
@13,40#. For the purpose of comparison we assume the
polarization as observed in Ref.@23# ~see, however, Ref
@27#!, and therefore discard the contribution of resonan
escaping particles.

All other quantities needed for calculation of the injectio
spectrum can be obtained from the above results givenMA
andMS and from RH conditions. However, shocks that for
in simulations do not follow the latter exactly, due to th
losses through the boundaries of simulation box and o
reasons discussed earlier. Therefore, it is appropriate to
some critical parameters directly from simulations. For e
ample, the total compression ratio obtained in Ref.@23# is
close to 4.2, exceeding the limiting value of 4. At the sam
time the shock is noticeably modified, so that the local co
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pression ratio is substantially smaller. We make our comp
son takingr 54.0, which also corresponds to a strong sho
The downstream temperature slightly deviates from the
prescriptions as well, and we take it from the simulatio
(T523106 K) in order to ensure coincidence of the therm
parts of the spectra. The amplitude parameter« for the shock
of MA55.25 in @23# may be calculated using Eq.~72! or
~78!. We estimateL5Dv i /vb'1 which is appropriate for a
strong shock, and obtain«'0.3. This « is in reasonable
agreement with the simulation results. It should be reme
bered, however, that Eq.~78! was derived for the resonan
leakage and a somewhat different although very sim
equation should have been used in the case of adiabatic
age, which would have given a somewhat higher«. How-
ever, some of the resonant particles probably leak in
simulations, and we adopt Eq.~78! for our estimate of«.
Furthermore, in the self-consistent determination of« in Sec.
VII only the ‘‘first generation’’ particles are taken into ac
count, which clearly leads to an overestimated« in Eq. ~72!.

We calculate the wave numberk0 from the condition of
frequency conservation across the shock transition,k0

5kur (MA21)/(MA2Ar ), where ku is an upstream wave
number that we in turn obtain from the resonant condit
kuvb'vci that we wrote here to the leading order in 1/MA .
In general, the diapason of unstable wave numbers ma
quite broad since the escaping beam is broad inv i . An ac-
curate calculation of the most unstablek is a difficult prob-
lem, since the beam distribution depends on thisk as well
and we restrict ourselves to a simple estimate based on
mean beam velocity. That is, the escaping beam occupie
velocity space at least an interval2v th av' /k01u2&v i

,0, wherev i is a dimensional particle velocity in the shoc
frame andv th a is a dimensionless threshold velocity for a
adiabatic escape@see text below Eq.~82!#; v th a'11« is
roughly independent of the wave polarization. From the
considerations, we obtainv' /k0u1'1.1.

We compare our analytic calculations~see the Appendix
for more details! with the hybrid simulations@23# in Fig. 8.
The downstream Maxwellian is the same in both cases, a
is drawn with the thin line. The squares are from simulat
whereas the heavy line shows the result of integration of E
~81! and~A1!. The slope of the energy spectrum}E2s, with
s53/(r 21)'1 that must form at energies sufficient
higher than the thermal energy according to the stand
theory of diffusive shock acceleration is also shown by
dotted-dashed line drawn at arbitrary height. Finally,
dashed line shows the solution of Eq.~81! with t[1, i.e., for
a completely transparent thermostat@41#.

The first conclusion that may be drawn from Fig. 8 is th
the effect of particle filtering by the thermostat is very stro
and reduces the injection rate by one order of magnit
compared to the case of ‘‘free’’ injection, i.e., without th
strong wave particle interaction downstream. Furthermo
the agreement with the simulation spectrum is very go
although the latter does not exhibit a correct high ene
asymptotics, most probably due to the losses of high ene
particles. It is reasonable to assume that if there were no s
losses a correct spectral slope~with probably somewha
higher amplitude! would be achieved in the simulation at a
energy where the slope now has a minimum~intersection
point with the analytical spectrum!. This means that the two
i-
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methods would produce similar injection rates if the latter
understood as an amplitude of the high energy asympto
}E2s. The lack of low energy particles in the analytic
spectrum should be attributed to the absence of resona
leaking ~or reflected! particles that are probably still prese
in the simulations. This might also slightly underestimate
injection rate, as is perhaps the case in the simulations
cause of the losses. At the same time we feel that whate
physical ingredients~like the resonantly leaking particles!
are added to the above calculation scheme it will not cha
the injection rate significantly. This is due to the strong se
regulation of the leakage~injection! process. The shock al
ways seems to leak at a critical rate which is just enough
confine the downstream plasma through wave generation
discussed earlier. This fundamental aspect of particle in
tion at quasiparallel collisionless shocks has been fores
by previous authors; e.g., Refs.@1,9,42#.

X. OTHER POSSIBLE APPROACHES, EXISTING
AND PROSPECTIVE

Existing theories of shock dissipation and shock accele
tion have not included the injection of the shocked plas
into the foreshock region self-consistently. Important
sights provide hybrid simulations, but being substantia
limited in space, time, and particle energy, they miss
backreaction of accelerated particles on the shock struc
and, therefore, on injection and shock dissipation. Mo
Carlo simulations~e.g., Ref.@43#! include the backreaction
but they completely ignore the feedback from the turbulen
excited by injected particles themselves which may red
the injection rate by an order of magnitude without ma
changes in the flow structure.

Although the collisionless shock phenomenon is ve
complicated, the necessary information about the sourc
leaking ions can be inferred from the ordinary jump con

FIG. 8. Particle spectra behind the shock, pitch angle avera
in the shock frame. The squares are from the hybrid simulati
@23#. Thin line is a correspondent Maxwellian fit which is taken
a source termf M in Eq. ~81!. The solution of this equation is show
with the heavy line. The dashed line shows the solution of the sa
equation fort[1. The dotted-dashed line indicates the slope of
spectrum appropriate for high energy particles, and a shock c
pression of 4.
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tions. The latter show that at least behind a strong shock
plasma distribution is so broad that a very large fraction o
can in principle escape upstream. This will certainly sm
out the subshock as a distinct structure, unless this the
return is choked by fast unstable coupling with the incom
flow. Thus the problem is not the source of the particles to
injected upstream, but rather the opposite, i.e., how to c
fine most of them on the downstream side of the shock a
of course, how to calculate the distribution of the rest wh
is leaking.

One may attempt to do this in several ways. First, one
invoke the processes occurring at the very shock interf
and immediately behind the shock, before the thermaliza
of the plasma flow is completed. One obvious candidate
this is the electrostatic barrier appearing, e.g., at the s
shock in the high Mach number hybrid simulations@9# ~some
further discussion can be found, e.g., in Ref.@44#!. This is
critically important in the quasiperpendicular shock mec
nism @45#. Quest @9# noticed, however, that its impact o
inflowing ions in strong quasiparallel shocks is very mod
due to the remarkably perfect compensation of the elec
static force with the Lorenz force. On the other hand, t
conclusion may not be true for the backstreaming ions.

The next possibility consists of the already mention
subshock reduction by a pressure gradient built up by
intense return beam in front of the shock. This is the mec
nism at work in Monte Carlo simulations@43#. In fact, it is
the only mechanism of self-regulation of the injection pr
cess at the subshock level in Monte Carlo models, si
these operate under a prescribed scattering law. It is, h
ever, not to be confused with the process of a large s
shock modification by diffusively accelerated high ener
particles which can also reduce the subshock. Although th
two processes of shock modification are physically v
similar, the latter operates over a much larger spatial sc
and depends, in addition to the injection rate, on factors
have nothing to do with the subshock physics, like losse
highest energies@46#. Note that the self-regulation mecha
nism suggested in this paper works very efficiently rega
less of~or along with! the flow modification in the precurso
and the above-mentioned feedback from the high-energy
ticles.

The simplified model considered here gives explicit fo
mulas for the distribution of back-streaming particles up
the wave amplitude~through the parameter«!. The latter has,
in turn, been calculated by considering the transformation
beam energy into the wave energy. This upstream wa
driven by the unstable beam, may also be subject to on
the known saturation mechanisms, especially in the c
when a compressional component of the wave field is add
Besides the quasilinear beam relaxation considered h
these may be wave steepening@47#, other processes of non
linear wave transformation, or beam trapping~see, e.g., Ref.
@29#!. Nevertheless, as in the case considered here, the w
amplitude should be calculated as a function of the be
intensity, providing the injection efficiency with no param
eterization.

XI. LIMITATIONS

We have assumed the unperturbed particle motion to
determined by a monochromatic wave which is an extre
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idealization in the shock environment. At the same time, i
often the case in wave-particle interaction that the form
the wave field is not important for particle trapping—on
the depth of a ‘‘potential well’’ is important. The worrying
situation here might be created by resonantly escaping
ticles~Sec. V!, that seem to require a ‘‘fine tuning’’ in wave
particle interaction. On the other hand, the background
bulence, that was assumed to be sufficiently strong@Eq.
~23!#, certainly diminishes the role of this fine tuning b
destroying the integrals of regular dynamics. Put anot
way, a particle escapes not because it stays in exact r
nance with the wave for a long time which would hardly
possible for any realistic wave field at a shock, but becaus
appears at the right place in phase space while being clos
the shock front. Otherwise its motion may be quite irregul
The key element of our treatment, that allowed us to cal
late the escape flux under a restricted knowledge of cha
particle dynamics, was, of course, the ergodicity assumpt

The injection scheme presented here will require cert
modification when applied to the case of finiteunB . Scholer,
Kucharek, and Trattner demonstrated, by means of hy
simulations@37#, that the contribution of particles stayin
sufficiently long at the shock front is increasingly importa
in this case. Within our scheme, these particles can be
mally identified with the particles that are in nonlinear res
nance with the trailing wave, have the averaged velocityv̄z
'2u0 ~marginal escape! and are close to the shock fron
Upon interaction with it they gain energy, although th
mechanism whereby it happens is yet to be studied.

Generally, the tight link between the escape flux and
wave amplitude emphasized in this paper is the essenc
the self-regulation of the shock dissipation process giv
e.g., by Eq.~71!. However, depending on the age and size
the shock this may be not the only way the shock regula
its own energy dissipation and particle acceleration. In n
linearly accelerating shocks the subshock strength may
significantly reduced. Also, the deceleration of the flow
front of the shock by high energy particles drives the su
shock Mach number to lower values, which may have
important impact on both the injection and the overall flo
structure near the shock.

XII. CONCLUSIONS AND DISCUSSION

We have demonstrated that the large amplitude wave t
can efficiently filter the warm downstream plasma in its lea
age upstream, scattering back typically no more than 5%
the downstream protons in the case of a strong shock a
left-hand polarized~Alfven! wave. MS-type polarization re
sults in noticeably better confinement of the hot downstre
plasma and weaker leakage~injection!. This means that the
MS turbulence is more suitable for maintaining a distin
quasiparallel shock structure than theA turbulence. The
spectrum of high energy particles accelerated out of
backstreaming beam is calculated with the help of inject
theory@13#. The resulting spectra~i! are in reasonable agree
ment with the broad dynamical range hybrid simulations
date @23#, ~ii ! evolve into a standard power law at high
energies, and~iii ! have an intensity that may easily exce
the threshold of the nonlinear acceleration regime~see be-
low!.
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It is needless to say that a reliable calculation of inject
rate, that takes account of all essential interrelations betw
physical processes like the leakage and/or reflection, w
generation, particle trapping, and shock modification by
ergized particles, could dramatically improve our und
standing of how strong shocks accelerate particles. Re
analytic solutions@46,48# for nonlinearly accelerating shock
~i.e., shocks whose structure may be almost entirely de
mined by accelerated particles! show that the dependence
the acceleration efficiency upon the injection rate has a c
cal character allowing for extremely different solutions
quite close or even the same injection rates. Therefore,
studies of the energetic particle~cosmic ray! production@49–
52# in such shocks or, in other words, of how the sho
distributes its energy between thermal and nonthermal c
ponents of the shocked plasma, should perhaps be foc
on the subshock where particles are injected into the ac
eration process. The necessary subshock parameters sh
however, be determined self-consistently from kinetic no
linear calculations of the shock structure like those m
tioned above.
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APPENDIX

In an expanded form, Eq.~81! can be written as~see Ref.
@13# for further details!

F~v !5
2p2~kk1!2/3

31/3G2~2/3!
t

z1
2

z2
2 E

0

h0
h dh Ai S k1

1/3z1

z2
h D

3Ai S k1/3
z1

c
h DF~v1!1t f M~v !. ~A1!

Here the following notations have been used:

z65v6u2 ,

v15Av222Du~z1h1cĥ!, Du5u12u2 ,

c5Au1
21z1z222Duz1h2u1 ,

h05min~1,z2/2Du!.

G is the gamma function, Ai denotes the Airy function, a
ĥ. 2

3 .
The coefficientk1 is a certain functional of the spectra

density of the background turbulence downstream, that
sures pitch angle scattering, and has been discussed al
in Sec. III. We takek1 from Ref. @13#, Eq. ~67!, using
slightly different notations:
n
en
ve
-
-
nt

r-

i-
t
he

-
ed
l-

uld,
-
-

n
y
-
d
f

n-
ady

k15
a3

Ld
H 2 coshF1

3
cosh21~a2321!G21J 3

, ~A2!

where

a5
G~1/3!

34/3G~2/3!Ld
2/3

and

Ld5
1

z2
E

0

z2

dz~12z2/z2
2 !2/D~2z!.

HereD is the diffusion coefficient in velocity space norma
ized to its value atz50 as a function of the resonant (z
'u21vci /k) parallel velocity of the ions in the shoc
frame.

The coefficientk has a similar meaning ask1 , but it is
related to the particle transport in the upstream medium,

k5
2

3L H 32g12Ag~62g!

3sinhF1

3
sinh21S 2g219g227/2

Ag~62g!3/2 D G J , ~A3!

where

g5
4p3)

27G6~2/3!L2

and

L5
1

z28
E

0

z28 dz~12z2/z28
2!2/D~2z!.

Herez28 5V2u1 is an upstream analog ofz2 calculated for
the upstream absolute value of particle velocityV. Note that
in Ref. @13# the expression fork1 ~Appendix C! was given
erroneously only for the caseg.6 ~even forg@1! and the
formula forg contained a misprint. At the same time the ca
g,6 has been actually considered in numerical examp
however, with the correct numerical values ofk1 and g.
Generally, there still exists some arbitrariness in choos
the parametersk and k1 since the details of the spectra o
background turbulence are not determined in injection the
@13#. Nevertheless, the resulting particle spectrum may
calculated because it is rather insensitive to parametersk and
k1 , although they slightly influence the slope of the spe
trum at high energies. In example given in Sec. IX we p
k51.3 andk151.15, ignoring their possible dependence
particle energy. Note that the casek'k1'1 corresponds to
a simple assumptionD5const, which is reasonable for low
energy part of the spectrum,z2!u2 . In this case a slightly
softer spectrum is produced at high energies for sufficien
high downstream temperature. This was shown in Ref.@13#,
where such values ofk andk1 have been employed.

The solutionF(v) in Eq. ~A1! is in fact a one-sided~v i

,0 in the shock frame! isotropic~in the downstream frame!
part of the distribution function calculated atz50. To per-
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form the matching with the high energy standard~fully iso-
tropic! power-law spectrum, a spectrum far downstre
must be obtained, since only the latter is also isotropic in
downstream frame at lower energies. The necessary form
ca

ew
-
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v
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iv
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a
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e
las

are given in Ref.@13#. For the purpose of comparison wit
the simulation spectra given in Ref.@23#, this far downstream
spectrum is pitch angle averaged in the shock frame
drawn in Fig. 8.
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